Giải Bài 1 Trang 18 SGK Giải Tích 12

LG a

Áp dụng quy tắc I, hãy tìm các điểm cực trị của hàm số sau :

\(y{\rm{ }} = {\rm{ }}2{x^{3}} + {\rm{ }}3{x^2}-{\rm{ }}36x{\rm{ }}-{\rm{ }}10\) ;

Phương pháp giải:

Quy tắc 1 tìm cực trị của hàm số:

Bước 1: Tìm tập xác định.

Bước 2: Tính \(f'\left( x \right)\). Tìm các điểm mà tại đó \(f'\left( x \right)\) bằng 0 hoặc \(f'\left( x \right)\) không xác định.

Bước 3: Lập bảng biến thiên.

Bước 4: Từ bảng biến thiên suy ra các điểm cực trị.

Lời giải chi tiết:

Tập xác định: \(D = \mathbb R\)

\(\eqalign{& y' = 6{{\rm{x}}^2} + 6{\rm{x}} - 36;y' = 0 \cr & \Leftrightarrow \left[ \matrix{x = 2\Rightarrow {y = - 54}  \hfill \cr x = - 3 \Rightarrow  {y = 71} \hfill \cr} \right. \cr} \)

\(\begin{array}{l}y' < 0 \Leftrightarrow x \in \left( { - 3;2} \right)\\y' > 0 \Leftrightarrow x \in \left( { - \infty ; - 3} \right) \cup \left( {2; + \infty } \right)\end{array}\)

\(\mathop {\lim }\limits_{x \to  - \infty } y =  - \infty ;\,\,\mathop {\lim }\limits_{x \to  + \infty } y =  + \infty \)

Bảng biến thiên:

Hàm số đạt cực đại tại \(x = -3\) và  \(y\)CĐ \(= 71\)

Hàm số đạt cực tiểu tại \(x = 2\) và \(y\)CT \(= -54\)

Từ khóa » Cực Trị Của Hàm Số Bài Tập Trang 18