Giải Bài 1 Trang 18 Sgk Giải Tích 12

Toán 12 | Giải bài tập Toán 12 (hay nhất) | Giải sgk Toán 12
  • Giải Toán 12
  • Giải bài tập Toán 12 (đầy đủ)
  • Kết nối tri thức
  • Giải sgk Toán 12 Kết nối tri thức
  • Giải Chuyên đề học tập Toán 12 Kết nối tri thức
  • Chân trời sáng tạo
  • Giải sgk Toán 12 Chân trời sáng tạo
  • Giải Chuyên đề học tập Toán 12 Chân trời sáng tạo
  • Cánh diều
  • Giải sgk Toán 12 Cánh diều
  • Giải Chuyên đề học tập Toán 12 Cánh diều
Giải Toán 12 trang 18 Kết nối tri thức, Chân trời sáng tạo, Cánh diều
  • Giảm giá 50% sách VietJack đánh giá năng lực các trường trên Shopee Mall
Trang trước Trang sau

Trọn bộ lời giải bài tập Toán 12 trang 18 Kết nối tri thức, Chân trời sáng tạo, Cánh diều sẽ giúp học sinh lớp 12 dễ dàng làm bài tập Toán 12 trang 18. Bạn vào trang hoặc Xem lời giải để theo dõi chi tiết.

  • Toán lớp 12 trang 18 Tập 1
  • Toán lớp 12 trang 18 Tập 2

Giải Toán 12 trang 18 Kết nối tri thức, Chân trời sáng tạo, Cánh diều

Quảng cáo

- Toán lớp 12 trang 18 Tập 1 (sách mới):

  • Giải Toán 12 trang 18 Tập 1 Kết nối tri thức

    Xem lời giải

  • Giải Toán 12 trang 18 Tập 1 Chân trời sáng tạo

    Xem lời giải

  • Luyện tập 3 trang 18 Toán 12 Tập 1 Tập 1 Cánh diều

    Xem lời giải

- Toán lớp 12 trang 18 Tập 2 (sách mới):

  • Giải Toán 12 trang 18 Tập 2 Kết nối tri thức

    Xem lời giải

  • Giải Toán 12 trang 18 Tập 2 Chân trời sáng tạo

    Xem lời giải

Quảng cáo

Lưu trữ: Giải Toán 12 trang 18 (sách cũ)

Bài 1 (trang 18 SGK Giải tích 12): Áp dụng Quy tắc I, hãy tìm các điểm cực trị của các hàm số sau:

a) y = 2x3 + 3x2 - 36x - 10;

Giải bài 1 trang 18 sgk Giải tích 12 | Để học tốt Toán 12

Lời giải:

a) TXĐ: D = ℝ

Ta có: y' = 6x2 + 6x - 36

y' = 0 ⇔ 6x2 + 6x - 36 ⇔ x=2x=−3

Bảng biến thiên:

Giải bài 1 trang 18 sgk Giải tích 12 | Để học tốt Toán 12

Kết luận :

Hàm số đạt cực đại tại x = -3 ; yCĐ = 71

Hàm số đạt cực tiểu tại x = 2; yCT = -54.

b) TXĐ: D = ℝ

Ta có: y'= 4x3 + 4x = 4x(x2 + 1)

y' = 0 ⇔ 4x(x2 + 1) = 0 ⇔ x = 0 (do x2 + 1 > 0 với mọi x)

Bảng biến thiên:

Giải bài 1 trang 18 sgk Giải tích 12 | Để học tốt Toán 12

Vậy hàm số đạt cực tiểu tại x = 0; yCT = -3

hàm số không có điểm cực đại.

c) TXĐ: D = ℝ \{0}

Ta có: Giải bài 1 trang 18 sgk Giải tích 12 | Để học tốt Toán 12

y' = 0 ⇔ 1 - 1x2 = 0 ⇔ x2 = 1 ⇔ x = ±1

Bảng biến thiên:

Giải bài 1 trang 18 sgk Giải tích 12 | Để học tốt Toán 12

Vậy hàm số đạt cực đại tại x = -1; yCĐ = -2;

hàm số đạt cực tiểu tại x = 1; yCT = 2.

d) TXĐ: D = ℝ

Ta có: y'= (x3)’.(1 – x)2 + x3.[(1 – x)2]’

= 3x2.(1 – x)2 + x3.2(1 – x).(1 – x)’

= 3x2(1 – x)2 - 2x3(1 – x)

= x2.(1 – x)(3 – 5x)

y' = 0 ⇔ x = 0; x = 1 hoặc x = 35

Bảng biến thiên:

Giải bài 1 trang 18 sgk Giải tích 12 | Để học tốt Toán 12

Vậy hàm số đạt cực đại tại x = Giải bài 1 trang 18 sgk Giải tích 12 | Để học tốt Toán 12, giá trị cực đại là yCĐ = 1083125.

hàm số đạt cực tiểu tại x = 1, giá trị cực tiểu là yCT = 1.

(Lưu ý: x = 0 không phải là cực trị vì tại điểm đó đạo hàm bằng 0 nhưng đạo hàm không đổi dấu khi đi qua x = 0.)

Quảng cáo

e) Tập xác định: D = ℝ

Ta có: y' = 2x−12x2−x+1

Có y' = 0 ⇔ 2x - 1 = 0 ⇔ x = 12

Bảng biến thiên:

Giải bài 1 trang 18 sgk Giải tích 12 | Để học tốt Toán 12

Vậy hàm số đạt cực tiểu tại x = 12, giá trị cực tiểu yCT = 32.

Kiến thức áp dụng

Quy tắc tìm điểm cực trị của hàm số y = f(x).

1. Tìm tập xác định.

2. Tính f’(x). Xác định các điểm thỏa mãn f’(x) = 0 hoặc f’(x) không xác định.

3. Lập bảng biến thiên.

4. Từ bảng biến thiên suy ra điểm cực trị.

(Điểm cực trị là các điểm làm cho f’(x) đổi dấu khi đi qua nó).

Tham khảo lời giải các bài tập Toán 12 bài 2 khác:

  • Trả lời câu hỏi Toán 12 Giải tích Bài 2 trang 13 : Dựa vào đồ thị (H.7, H.8), hãy chỉ ra....

  • Trả lời câu hỏi Toán 12 Giải tích Bài 2 trang 14 : Giả sử f(x) đạt cực đại tại xo....

  • Trả lời câu hỏi Toán 12 Giải tích Bài 2 trang 16 : a) Sử dụng đồ thị, hãy xem xét....

  • Bài 1 (trang 18 SGK Giải tích 12): Áp dụng quy tắc 1, hãy tìm các điểm cực trị ...

  • Bài 2 (trang 18 SGK Giải tích 12): Áp dụng quy tắc 2, hãy tìm các điểm cực trị...

  • Bài 3 (trang 18 SGK Giải tích 12): Chứng minh hàm số y=...

  • Bài 4 (trang 18 SGK Giải tích 12): Chứng minh rằng với mọi giá trị của tham số m,...

  • Bài 5 (trang 18 SGK Giải tích 12): Tìm a và b để các cực trị của hàm số y =...

  • Bài 6 (trang 18 SGK Giải tích 12): 6. Xác định giá trị của tham số m để hàm số m...

Các bài giải Toán 12 Giải tích Tập 1 Chương 1 khác:

  • Bài 2: Cực trị của hàm số
  • Bài 3: Giá trị lớn nhất và giá trị nhỏ nhất của hàm số
  • Bài 4: Đường tiệm cận
  • Bài 5: Khảo sát sự biến thiên và vẽ đồ thị của hàm số
  • Bài ôn tập chương I
  • Tài liệu cho giáo viên: Giáo án, powerpoint, đề thi giữa kì cuối kì, đánh giá năng lực, thi thử THPT, HSG, chuyên đề, bài tập cuối tuần..... độc quyền VietJack, giá hợp lí

Sách VietJack thi THPT quốc gia 2025 cho học sinh 2k7:

  • 30 đề toán, lý hóa, anh, văn 2025 (100-170k/1 cuốn)
  • 30 đề Đánh giá năng lực đại học quốc gia HN 2025 (cho 2k7)
  • 30 đề Đánh giá năng lực đại học quốc gia tp. Hồ Chí Minh 2025 (cho 2k7)

ĐỀ THI, GIÁO ÁN, GÓI THI ONLINE DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 12

Bộ giáo án, đề thi, bài giảng powerpoint, khóa học dành cho các thầy cô và học sinh lớp 12, đẩy đủ các bộ sách cánh diều, kết nối tri thức, chân trời sáng tạo tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Giáo án, bài giảng powerpoint Văn, Toán, Lí, Hóa....

4.5 (243)

799,000đs

199,000 VNĐ

1000 Đề thi bản word THPT quốc gia cá trường 2023 Toán, Lí, Hóa....

4.5 (243)

799,000đ

199,000 VNĐ

Đề thi thử DGNL (bản word) các trường 2023

4.5 (243)

799,000đ

199,000 VNĐ

xem tất cả Trang trước Trang sau cuc-tri-cua-ham-so.jsp Giải bài tập lớp 12 sách mới các môn học
  • Giải Tiếng Anh 12 Global Success
  • Giải sgk Tiếng Anh 12 Smart World
  • Giải sgk Tiếng Anh 12 Friends Global
  • Lớp 12 Kết nối tri thức
  • Soạn văn 12 (hay nhất) - KNTT
  • Soạn văn 12 (ngắn nhất) - KNTT
  • Giải sgk Toán 12 - KNTT
  • Giải sgk Vật Lí 12 - KNTT
  • Giải sgk Hóa học 12 - KNTT
  • Giải sgk Sinh học 12 - KNTT
  • Giải sgk Lịch Sử 12 - KNTT
  • Giải sgk Địa Lí 12 - KNTT
  • Giải sgk Giáo dục KTPL 12 - KNTT
  • Giải sgk Tin học 12 - KNTT
  • Giải sgk Công nghệ 12 - KNTT
  • Giải sgk Hoạt động trải nghiệm 12 - KNTT
  • Giải sgk Giáo dục quốc phòng 12 - KNTT
  • Giải sgk Âm nhạc 12 - KNTT
  • Giải sgk Mĩ thuật 12 - KNTT
  • Lớp 12 Chân trời sáng tạo
  • Soạn văn 12 (hay nhất) - CTST
  • Soạn văn 12 (ngắn nhất) - CTST
  • Giải sgk Toán 12 - CTST
  • Giải sgk Vật Lí 12 - CTST
  • Giải sgk Hóa học 12 - CTST
  • Giải sgk Sinh học 12 - CTST
  • Giải sgk Lịch Sử 12 - CTST
  • Giải sgk Địa Lí 12 - CTST
  • Giải sgk Giáo dục KTPL 12 - CTST
  • Giải sgk Tin học 12 - CTST
  • Giải sgk Hoạt động trải nghiệm 12 - CTST
  • Giải sgk Âm nhạc 12 - CTST
  • Lớp 12 Cánh diều
  • Soạn văn 12 Cánh diều (hay nhất)
  • Soạn văn 12 Cánh diều (ngắn nhất)
  • Giải sgk Toán 12 Cánh diều
  • Giải sgk Vật Lí 12 - Cánh diều
  • Giải sgk Hóa học 12 - Cánh diều
  • Giải sgk Sinh học 12 - Cánh diều
  • Giải sgk Lịch Sử 12 - Cánh diều
  • Giải sgk Địa Lí 12 - Cánh diều
  • Giải sgk Giáo dục KTPL 12 - Cánh diều
  • Giải sgk Tin học 12 - Cánh diều
  • Giải sgk Công nghệ 12 - Cánh diều
  • Giải sgk Hoạt động trải nghiệm 12 - Cánh diều
  • Giải sgk Giáo dục quốc phòng 12 - Cánh diều
  • Giải sgk Âm nhạc 12 - Cánh diều
Học cùng VietJack
Tài liệu giáo viên

Trang web chia sẻ nội dung miễn phí dành cho người Việt.

Lớp 1-2-3 Lớp 4 Lớp 5 Lớp 6 Lớp 7 Lớp 8 Lớp 9 Lớp 10 Lớp 11 Lớp 12 Lập trình Tiếng Anh

Chính sách

Chính sách bảo mật

Hình thức thanh toán

Chính sách đổi trả khóa học

Chính sách hủy khóa học

Tuyển dụng

Liên hệ với chúng tôi

Tầng 2, số nhà 541 Vũ Tông Phan, Phường Khương Đình, Quận Thanh Xuân, Thành phố Hà Nội, Việt Nam

Phone: 084 283 45 85

Email: vietjackteam@gmail.com

Tải nội dung trên Google Play Tải nội dung trên IOS Store

CÔNG TY TNHH ĐẦU TƯ VÀ DỊCH VỤ GIÁO DỤC VIETJACK

Người đại diện: Nguyễn Thanh Tuyền

Số giấy chứng nhận đăng ký kinh doanh: 0108307822, ngày cấp: 04/06/2018, nơi cấp: Sở Kế hoạch và Đầu tư thành phố Hà Nội.

2015 © All Rights Reserved. DMCA.com Protection Status

Từ khóa » Giải Bài Tập Sgk Giải Tích 12 Trang 18