Giải Bài 14, 15, 16 Trang 153 SGK Giải Tích 12 Nâng Cao
Có thể bạn quan tâm
Bài 14 Trang 153 SGK Đại số và Giải tích 12 Nâng cao
a) Một vật chuyển động với vận tốc \(v\left( t \right) = 1 - 2\sin 2t\,\,\left( {m/s} \right)\). Tính quãng đường vật di chuyển trong khoảng thời gian từ thời điểm \(t = 0\) (s) đến thời điểm \(t = {{3\pi } \over 4}\,\left( s \right)\).
b) Một vật chuyển động chậm dần với vận tốc \(v\left( t \right) = 160 - 10t\,\left( {m/s} \right)\). Tính quãng đường mà vật di chuyển được từ thời điểm t=0 đến thời điểm mà vật dừng lại.
Giải.
a) Quãng đường vật di chuyển trong thời gian từ \(t=0\) (s) đến \(t = {{3\pi } \over 4}\left( s \right)\) là: \(S = \int\limits_0^{{{3\pi } \over 4}} {\left( {1 - 2\sin 2t} \right)dt} = \left( {t + \cos 2t} \right)\mathop |\nolimits_0^{{{3\pi } \over 4}} \)
\(= {{3\pi } \over 4} - 1\left( m \right)\)
b) Gọi \({t_0}\) là thời điểm vật dừng lại, khi đó:
\(v\left( {{t_0}} \right) = 0 \Leftrightarrow 160 - 10{t_0} = 0 \Leftrightarrow {t_0} = 16.\)
Quãng đường vật di chuyển từ \(t=0\) đến \(t=16\) là
\(S = \int\limits_0^{16} {\left( {160t - 10t} \right)dt = \left( {160t - 5{t^2}} \right)\mathop |\nolimits_0^6 } = 1280.\)
Bài 15 Trang 153 SGK Đại số và Giải tích 12 Nâng cao
Một vật đang chuyển động với vận tốc 10 m/s thì tăng tốc với gia tốc \(a = 3t + {t^2}\,\left( {m/{s^2}} \right)\). Tính quãng đường vật đi được trong khoảng thời gian 10 giây kể từ lúc bắt đầu tang tốc.
Giải
Gọi v(t) là vận tốc của vật. ta có : \(v'\left( t \right) = a\left( t \right) = 3t + {t^2}\)
Suy ra \(v\left( t \right) = {{3{t^2}} \over 2} + {{{t^3}} \over 3} + C.\) vì \(v(0)=10\) nên suy ra \(C=10\)
Vậy \(v\left( t \right) = {{3{t^2}} \over 2} + {{{t^3}} \over 3} + 10\)
Quãng đường vật đi được là:
\(S = \int\limits_0^{10} {\left( {{{3{t^2}} \over 2} + {{{t^3}} \over 3} + 10} \right)dt} \)
\(= \left. {\left( {{{{t^3}} \over 2} + {{{t^4}} \over {12}} + 10t} \right)} \right|_0^{10} = {{4300} \over 3}\left( m \right).\)
Bài 16 Trang 153 SGK Đại số và Giải tích 12 Nâng cao
Một viên đạn được bắn lên theo phương thẳng đứng với vận tốc ban đầu 25 m/s. gia tốc trọng trường là \(9,8\,m/{s^2}\).
a) Sau bao lâu viên đạn đạt tới vận tốc cao nhất.
b) Tính quãng đường viên đạn đi được tính từ lúc bắn lên cho đến khi rơi xuống đất.
Giải
a) Gọi v(t) là vận tốc của viên đạn. ta có
Suy ra \(v\left( t \right) = - 9,8t + C.\) vì \(v(0)=25\) nên suy ra \(C=25\)
Vậy \(v\left( t \right) = - 9,8t + 25.\)
Gọi T là thời điểm viên đạn đạt tốc độ cao nhất. tại đó vận tốc viên đạn có vận tốc bằng 0. Vậy \(v(T)=0\) suy ra \(T = {{25} \over {9,8}} \approx 2,55\,\) (giây).
b) Quãng đường viên đi được cho tới thời điểm \(T=2,55\) (giây) là:
\(S = \int\limits_0^T {\left( { - 9,8t + 25} \right)dt} \)
\(= - 9,8{{{T^2}} \over 2} + 25T \approx 31,89\,\left( m \right)\)
Vậy quãng đường viên đạn đi được cho đến khi rơi là xuống đất là \(2S = 63,78\left( m \right).\)
Giaibaitap.me
Từ khóa » Giải Bài Tập Sgk Sinh Học 12 Nâng Cao Bài 14
-
Sinh 12 Nâng Cao Bài 14: Di Truyền Và Liên Kết
-
Sinh Học 12 Bài 14: Thực Hành Lai Giống
-
Bài 14: Di Truyền Và Liên Kết
-
Giải Bài Tập SGK Sinh 12 Nâng Cao Bài 14: Di Truyền Và Liên Kết
-
Giải Sinh 12 SGK Nâng Cao Chương 2 Bài 14 Di Truyền Và Liên Kết
-
Bài 14. Di Truyền Liên Kết - Sinh Học 12 Nâng Cao - Lê Thị Thăm
-
Giải Bài Tập Sgk Sinh Học 12 Hay Nhất - Nâng Cao - Haylamdo
-
Giải Bài 1, 2, 3, 4, 5 Trang 14 SGK Sinh Học 12
-
Sách Giáo Khoa Sinh Học Lớp 12 Nâng Cao
-
Câu 2 Trang 45 SGK Sinh Học 12 Nâng Cao - Tìm đáp án
-
Bài 14, 15, 16 Trang 53, 54 Hình Học 12 Nâng Cao: Mặt Trụ, Hình Trụ ...
-
Giải Bài Tập Sgk Sinh Học 12 Nâng Cao Bài 8 - 123doc
-
Giải Bài Tập Hóa 12 Nâng Cao Bài 14 - Luyện Tập
-
Sách Giáo Khoa Địa Lí Lớp 12 Nâng Cao - Bài 14. Thiên Nhiên ...