Giai Hệ Phương Trình \(\int^{\left(m 1\right)x My=2m-1}_{mx-y ... - Hoc24
Có thể bạn quan tâm
HOC24
Lớp học Học bài Hỏi bài Giải bài tập Đề thi ĐGNL Tin tức Cuộc thi vui Khen thưởng- Tìm kiếm câu trả lời Tìm kiếm câu trả lời cho câu hỏi của bạn
Lớp học
- Lớp 12
- Lớp 11
- Lớp 10
- Lớp 9
- Lớp 8
- Lớp 7
- Lớp 6
- Lớp 5
- Lớp 4
- Lớp 3
- Lớp 2
- Lớp 1
Môn học
- Toán
- Vật lý
- Hóa học
- Sinh học
- Ngữ văn
- Tiếng anh
- Lịch sử
- Địa lý
- Tin học
- Công nghệ
- Giáo dục công dân
- Tiếng anh thí điểm
- Đạo đức
- Tự nhiên và xã hội
- Khoa học
- Lịch sử và Địa lý
- Tiếng việt
- Khoa học tự nhiên
- Hoạt động trải nghiệm
- Hoạt động trải nghiệm, hướng nghiệp
- Giáo dục kinh tế và pháp luật
Chủ đề / Chương
Bài học
HOC24
Khách vãng lai Đăng nhập Đăng ký Khám phá Hỏi đáp Đề thi Tin tức Cuộc thi vui Khen thưởng - Tất cả
- Toán
- Vật lý
- Hóa học
- Sinh học
- Ngữ văn
- Tiếng anh
- Lịch sử
- Địa lý
- Tin học
- Công nghệ
- Giáo dục công dân
- Tiếng anh thí điểm
- Hoạt động trải nghiệm, hướng nghiệp
- Giáo dục kinh tế và pháp luật
Câu hỏi
Hủy Xác nhận phù hợp Chọn lớp Tất cả Lớp 12 Lớp 11 Lớp 10 Lớp 9 Lớp 8 Lớp 7 Lớp 6 Lớp 5 Lớp 4 Lớp 3 Lớp 2 Lớp 1 Môn học Toán Vật lý Hóa học Sinh học Ngữ văn Tiếng anh Lịch sử Địa lý Tin học Công nghệ Giáo dục công dân Tiếng anh thí điểm Đạo đức Tự nhiên và xã hội Khoa học Lịch sử và Địa lý Tiếng việt Khoa học tự nhiên Hoạt động trải nghiệm Hoạt động trải nghiệm, hướng nghiệp Giáo dục kinh tế và pháp luật Mới nhất Mới nhất Chưa trả lời Câu hỏi hay
Lê Ngọc Diệp 18 tháng 1 2016 lúc 15:55 Giai hệ phương trình
\(\int^{\left(m+1\right)x+my=2m-1}_{mx-y=m^2-2}\)
Tìm m để hệ phương trình có nghiệm duy nhất thỏa mãn A=xy đạt GTLN
Lớp 9 Toán Những câu hỏi liên quan
- Nguyên Thảo Lương
-
cho hệ: \(\left\{{}\begin{matrix}mx-y=2m\\x-my=m+1\end{matrix}\right.\)
a. giải hệ phương trình khi m=2
b. tìm m để hệ phương trình có nghiệm duy nhất (x;y) thỏa mãn: x2 - y2=\(\dfrac{5}{2}\)
Xem chi tiết Lớp 9 Toán Ôn thi vào 10 1 0
Gửi Hủy
Nguyễn Lê Phước Thịnh CTV a: Khi m=2 thì hệ sẽ là;
2x-y=4 và x-2y=3
=>x=5/3 và y=-2/3
b: mx-y=2m và x-my=m+1
=>x=my+m+1 và m(my+m+1)-y=2m
=>m^2y+m^2+m-y-2m=0
=>y(m^2-1)=-m^2+m
Để phương trình có nghiệm duy nhất thì m^2-1<>0
=>m<>1; m<>-1
=>y=(-m^2+m)/(m^2-1)=(-m)/m+1
x=my+m+1
\(=\dfrac{-m^2+m^2+2m+1}{m+1}=\dfrac{2m+1}{m+1}\)
x^2-y^2=5/2
=>\(\left(\dfrac{2m+1}{m+1}\right)^2-\left(-\dfrac{m}{m+1}\right)^2=\dfrac{5}{2}\)
=>\(\dfrac{4m^2+4m+1-m^2}{\left(m+1\right)^2}=\dfrac{5}{2}\)
=>2(3m^2+4m+1)=5(m^2+2m+1)
=>6m^2+8m+2-5m^2-10m-5=0
=>m^2-2m-3=0
=>(m-3)(m+1)=0
=>m=3
Đúng 0 Bình luận (0)
Gửi Hủy
- Mai Anh Phạm
giải hệ phương trình \(\left\{{}\begin{matrix}mx+2y=m+1\\x-y=2\end{matrix}\right.\)
a, giải hệ phương trình khi m=2
b, tìm m để hệ phương trình có nghiệm duy nhất (x,y) thỏa mãn xy = x+y+2
Xem chi tiết Lớp 9 Toán Ôn thi vào 10 3 0
Gửi Hủy
Yeutoanhoc `x-y=2<=>x=y+2` thay vào trên`=>m(y+2)+2y=m+1``<=>y(m+2)=m+1-2m``<=>y(m+2)=1-2m`Để hpt có nghiệm duy nhất`=>m+2 ne 0<=>m ne -2``=>y=(1-2m)/(m+2)``=>x=y+2=5/(m+2)``xy=x+y+2``<=>(5-10m)/(m+2)=(6-2m)/(m+2)+2``<=>(5-10m)/(m+2)=10/(m+2)``<=>5-10m=10``<=>10m=-5``<=>m=-1/2(tm)`Vậy `m=-1/2` thì HPT có nghiệm duy nhât `xy=x+y+2`
Đúng 1 Bình luận (0)
Gửi Hủy
Yeutoanhoc `a)m=2`
$\begin{cases}2x+2y=3\\x-y=2\end{cases}$`<=>` $\begin{cases}2x+2y=3\\2x-2y=4\end{cases}$`<=>` $\begin{cases}4y=-1\\x=y+2\end{cases}$`<=>` $\begin{cases}y=-\dfrac14\\y=\dfrac74\end{cases}$Vậy m=2 thì `(x,y)=(7/4,-1/4)`
Đúng 0 Bình luận (0)
Gửi Hủy
Yeutoanhoc Sửa đoạn `xy=x+y+2`
``<=>(5-10m)/(m+2)^2=(6-2m)/(m+2)+2``<=>(5-10m)/(m+2)^2=10/(m+2)`
`<=>5-10m=10(m+2)`
`<=>1-2m=2m+4`
`<=>4m=-3`
`<=>m=-3/4(tm)`
Đúng 0 Bình luận (0)
Gửi Hủy
- trần vũ hoàng phúc
-
cho hệ phương trình \(\left\{{}\begin{matrix}x+my=m+1\\mx+y=2m\end{matrix}\right.\)(m là tham số ).Tìm m để hệ phương trình có nghiệm duy nhất (x;y) thỏa mãn \(\left\{{}\begin{matrix}x\ge2\\y\ge1\end{matrix}\right.\)
Xem chi tiết Lớp 9 Toán 1 0
Gửi Hủy
Nguyễn Lê Phước Thịnh CTV Để hệ phương trình có nghiệm duy nhất thì \(\dfrac{1}{m}\ne\dfrac{m}{1}\)
=>\(m^2\ne1\)
=>\(m\notin\left\{1;-1\right\}\)
Khi \(m\notin\left\{1;-1\right\}\) thì \(\left\{{}\begin{matrix}x+my=m+1\\mx+y=2m\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=m+1-my\\m\left(m+1-my\right)+y=2m\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=m+1-my\\m^2+m-m^2y+y-2m=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y\left(-m^2+1\right)=-m^2+m\\x=m+1-my\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=\dfrac{m^2-m}{m^2-1}=\dfrac{m\left(m-1\right)}{\left(m-1\right)\left(m+1\right)}=\dfrac{m}{m+1}\\x=m+1-\dfrac{m^2}{m+1}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=\dfrac{m}{m+1}\\x=\dfrac{\left(m+1\right)^2-m^2}{m+1}=\dfrac{2m+1}{m+1}\end{matrix}\right.\)
Để \(\left\{{}\begin{matrix}x>=2\\y>=1\end{matrix}\right.\) thì \(\left\{{}\begin{matrix}\dfrac{2m+1}{m+1}>=2\\\dfrac{m}{m+1}>=1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{2m+1-2\left(m+1\right)}{m+1}>=0\\\dfrac{m-m-1}{m+1}>=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{2m+1-2m-2}{m+1}>=0\\\dfrac{-1}{m+1}>=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-\dfrac{1}{m+1}>=0\\-\dfrac{1}{m+1}>=0\end{matrix}\right.\Leftrightarrow m+1< 0\)
=>m<-1
Đúng 1 Bình luận (0)
Gửi Hủy
- Blue Moon
Tìm m nguyên để
a, Hệ phương trình \(\hept{\begin{cases}mx+y=2m\\x+my=m+1\end{cases}}\)có nghiệm thỏa mãn \(x;y\in Z\)
b, Hệ phương trình \(\hept{\begin{cases}\left(m+1\right)x+my=2m-1\\mx-y=m^2-2\end{cases}}\)có nghiệm thỏa mãn A=xy đạt giá trị lớn nhất.
Xem chi tiết Lớp 9 Toán Câu hỏi của OLM 3 0
Gửi Hủy
alibaba nguyễn a/ \(\hept{\begin{cases}mx+y=2m\\x+my=m+1\end{cases}}\)
\(\Rightarrow\left(x+y\right)\left(m+1\right)=3m+1\)
\(\Leftrightarrow\left(x+y\right)=\frac{3m+1}{m+1}=3-\frac{2}{m+1}\)
Vì x, y nguyên nên (m + 1) phải là ước nguyên của 2.
Đúng 0 Bình luận (0)
Gửi Hủy
alibaba nguyễn b/ \(\hept{\begin{cases}\left(m+1\right)x+my=2m-1\\mx-y=m^2-2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(m+1\right)x+my=2m-1\left(1\right)\\y=mx-m^2+2\left(2\right)\end{cases}}\)
\(\Rightarrow\left(2\right)\Leftrightarrow\left(m+1\right)x+m\left(mx-m^2+2\right)=2m-1\)
\(\Leftrightarrow\left(m^2+m+1\right)\left(x-m+1\right)=0\)
\(\Rightarrow\hept{\begin{cases}x=m-1\\y=2-m\end{cases}}\)
\(\Rightarrow A=\left(m-1\right)\left(2-m\right)=-m^2+3m-2\le\frac{1}{4}\)
Đúng 0 Bình luận (0)
Gửi Hủy
Blue Moon 14 tháng 11 2018 lúc 20:34 alibaba nguyễn có thể làm chi tiết hơn được ko
Đúng 0 Bình luận (0)
Gửi Hủy
- thi anh
Cho hệ phương trình: x + my = m + 1 mx + y = 2m,Tìm m để hệ phương trình có nghiệm duy nhất (x;y) thỏa mãn x > 2 và y > 1
Xem chi tiết Lớp 9 Toán 0 1
Gửi Hủy
- Jakob Tetris
Cho hệ phương trình sau: x+y=2,mx-y=1 b) Tìm m để hệ phương trình có nghiệm duy nhất (x;y) c) Tìm m để hệ phương trình có nghiệm duy nhất (x;y) thỏa mãn x-3y=5 d) Tìm m để hệ phương trình có nghiệm duy nhất (x;y) thỏa mãn xy < 0 e) Tìm m để hệ phương trình có nghiệm duy nhất (x;y) thỏa mãn x+2y > 4 f) Tìm các giá trị của m để x;y là giá trị nguyên
Xem chi tiết Lớp 9 Toán Câu hỏi của OLM 1 0
Gửi Hủy
Nguyễn Lê Phước Thịnh CTV b: Để hệ có nghiệm duy nhất thì \(\frac{1}{m}<>\frac{1}{-1}\)
=>m<>-1
c: Để hệ có nghiệm duy nhất thì m<>-1
\(\begin{cases}x+y=2\\ mx-y=1\end{cases}\Rightarrow\begin{cases}x+y+mx-y=2+1=3\\ x+y=2\end{cases}\)
=>\(\begin{cases}x\left(m+1\right)=3\\ x+y=2\end{cases}\Rightarrow\begin{cases}x=\frac{3}{m+1}\\ y=2-x=2-\frac{3}{m+1}=\frac{2m+2-3}{m+1}=\frac{2m-1}{m+1}\end{cases}\)
x-3y=5
=>\(\frac{3}{m+1}-\frac{3\left(2m-1\right)}{m+1}=5\)
=>3-3(2m-1)=5(m+1)
=>3-6m+3=5m+5
=>-6m+6=5m+5
=>-11m=-1
=>\(m=\frac{1}{11}\) (nhận)
d: xy<0
=>\(\frac{3}{m+1}\cdot\frac{2m-1}{m+1}<0\)
=>3(2m-1)<0
=>2m-1<0
=>\(m<\frac12\)
Kết hợp với m<>-1, ta được: \(\begin{cases}m<\frac12\\ m<>-1\end{cases}\)
e: x+2y>4
=>\(\frac{3}{m+1}+\frac{2\left(2m-1\right)}{m+1}>4\)
=>3+2(2m-1)>4(m+1)
=>3+4m-2>4m+4
=>1>4(sai)
=>m∈∅
f: Để x,y nguyên thì 3⋮m+1 và 2m-1⋮m+1
=>3⋮m+1 và 2m+2-3⋮m+1
=>3⋮m+1 và -3⋮m+1
=>3⋮m+1
=>m+1∈{1;-1;3;-3}
=>m∈{0;-2;2;-4}
Đúng 0 Bình luận (0)
Gửi Hủy
- Trần Mun
Bài 2 : Cho hệ phương trình:
\(\left\{{}\begin{matrix}mx+y=5\left(1\right)\\2mx+3y=6\left(2\right)\end{matrix}\right.\)
Tìm m để hệ có nghiệm duy nhất(x;y) thỏa mãn:
(2m - 1)x + (m + 1)y = m (3)
Xem chi tiết Lớp 9 Toán 1 0
Gửi Hủy
Nguyễn Lê Phước Thịnh CTV Để hệ có nghiệm duy nhất thì \(\dfrac{m}{2m}\ne\dfrac{1}{3}\)
=>\(\dfrac{1}{2}\ne\dfrac{1}{3}\)(luôn đúng)
\(\left\{{}\begin{matrix}mx+y=5\\2mx+3y=6\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2mx+2y=10\\2mx+3y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-y=4\\mx+y=5\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=-4\\mx=5-y=5-\left(-4\right)=9\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=-4\\x=\dfrac{9}{m}\end{matrix}\right.\)
\(\left(2m-1\right)\cdot x+\left(m+1\right)\cdot y=m\)
=>\(\dfrac{9}{m}\left(2m-1\right)+\left(m+1\right)\cdot\left(-4\right)=m\)
=>\(\dfrac{9\left(2m-1\right)}{m}=m+4m+4=5m+4\)
=>m(5m+4)=18m-9
=>\(5m^2-14m+9=0\)
=>(m-1)(5m-9)=0
=>\(\left[{}\begin{matrix}m=1\\m=\dfrac{9}{5}\end{matrix}\right.\)
Đúng 1 Bình luận (0)
Gửi Hủy
- Rhider
-
cho hệ phương trình y = 2m - mx và x = 1 + m - my (m là tham số). Tìm m để hệ có nghiệm duy nhất (x;y) thỏa mãn x > 2 ; y > 1
Xem chi tiết Lớp 9 Toán 0 0
Gửi Hủy
- Trần Mun
Bài 3: Cho hệ phương trình:\(\left\{{}\begin{matrix}mx-y=1\\2x+my=4\end{matrix}\right.\)
a) Giải hệ khi m=1
b) Tìm tất cả các giá trị của m để hệ phương trình có nghiệm duy nhất (x;y) thỏa mãn x+y=2
Xem chi tiết Lớp 9 Toán 2 0
Gửi Hủy
Nguyễn Lê Phước Thịnh CTV a: Thay m=1 vào hệ phương trình, ta được:
\(\left\{{}\begin{matrix}x-y=1\\2x+y=4\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}3x=5\\x-y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{3}\\y=x-1=\dfrac{5}{3}-1=\dfrac{2}{3}\end{matrix}\right.\)
b: Để hệ có nghiệm duy nhất thì \(\dfrac{m}{2}\ne-\dfrac{1}{m}\)
=>\(m^2\ne-2\)(luôn đúng)
\(\left\{{}\begin{matrix}mx-y=1\\2x+my=4\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=mx-1\\2x+m\left(mx-1\right)=4\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=mx-1\\x\left(m^2+2\right)=m+4\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=\dfrac{m+4}{m^2+2}\\y=\dfrac{m\left(m+4\right)}{m^2+2}-1=\dfrac{m^2+4m-m^2-2}{m^2+2}=\dfrac{4m-2}{m^2+2}\end{matrix}\right.\)
x+y=2
=>\(\dfrac{m+4+4m-2}{m^2+2}=2\)
=>\(2m^2+4=5m+2\)
=>\(2m^2-5m+2=0\)
=>(2m-1)(m-2)=0
=>\(\left[{}\begin{matrix}2m-1=0\\m-2=0\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}m=\dfrac{1}{2}\\m=2\end{matrix}\right.\)
Đúng 1 Bình luận (0)
Gửi Hủy
@GiaSu0099 31 tháng 1 2024 lúc 20:58
Đúng 0 Bình luận (0)
Gửi Hủy Khoá học trên OLM (olm.vn)
- Toán lớp 9
- Ngữ văn lớp 9
- Tiếng Anh lớp 9
- Vật lý lớp 9
- Hoá học lớp 9
- Sinh học lớp 9
- Lịch sử lớp 9
- Địa lý lớp 9
Từ khóa » Cho Hpt X+my=m+1 Và Mx+y=2m
-
Giải Và Biện Luận Hề Phương Trình: Mx + Y = 2m Và X + My = M + 1
-
X + My = M + 1; Mx + Y = 2m. Giải Hệ Phương Trình Khi M = 2 - Lazi
-
Cho Hệ Phương Trình: ( X + My = M + 1 Mx + Y = 2m Right. (m Là T
-
Cho Hệ PT Mx+y=2m X+my=m+1 Tìm Các Giá Trị Nguyên Của M để Hệ ...
-
Cho Hệ Phương Trình X+my=m+1 Và Mx+y=2m (m Là Tham Số). Tìm M ...
-
Giải Và Biện Luận Hệ Phương Trình Mx+y=2m Và X+my=m+1 - Hoc247
-
Top 15 Cho Hpt X+my=m+1 Và Mx+y=2m
-
Y = 2m, X- My = 1+m. Tìm M để Hpt Có Nghiệm Duy ... - MarvelVietnam
-
Cho Hệ Phương Trình Mx -y=2m Và X-my=m+1 A, Tìm M để Hpt Có ...
-
Cho HPT Với Tham Số M: Mx - Y = 2m, X - Bất Động Sản ABC Land
-
Y = 2m, X- My = 1+m. Tìm M để Hpt Có Nghiệm Duy Nhất
-
Cho Hệ Phương Trình (m-1)x-y=2 Và Mx+y=m.tìm M để Hệ ... - Olm
-
Mx + (m+ 2) Y = 5 Và X + My = 2m + 3. Để Hệ Phương Trình Có Duy ...