Giải Toán Bằng Sơ đồ Ven - LỚP 10 - Tăng Giáp

Hãy đăng ký thành viên để có thể dễ dàng hỏi bài, trao đổi, giao lưu và chia sẻ về kiến thức

Đăng nhập

Tăng Giáp Trang chủ Diễn đàn > TOÁN HỌC > LỚP 10 > Chủ đề 1. MỆNH ĐỀ VÀ TẬP HỢP > Mệnh đề và tập hợp > Lớp 10 Giải toán bằng sơ đồ Ven

Thảo luận trong 'Mệnh đề và tập hợp' bắt đầu bởi moon, 5/12/18.

  1. moon

    moon Thành viên cấp 2 Thành viên BQT

    Tham gia ngày: 2/10/14 Bài viết: 160 Đã được thích: 46 Điểm thành tích: 28
    Phương pháp giải toán bằng sơ đồ Ven: Gồm 3 bước:
    • Bước 1: Chuyển bài toán về ngôn ngữ tập hợp.
    • Bước 2: Sử dụng sơ đồ Ven để minh họa các tập hợp.
    • Bước 3: Dựa vào sơ đồ Ven ta thiết lập được đẳng thức hoặc phương trình, hệ phương trình, từ đó tìm được kết quả bài toán.
    Ví dụ minh họa Ví dụ 1: Mỗi học sinh của lớp 10A đều biết chơi cờ tướng hoặc cờ vua, biết rằng có $25$ em biết chơi cờ tướng, $30$ em biết chơi cờ vua, $15$ em biết chơi cả hai. Hỏi lớp 10A có bao nhiêu em chỉ biết chơi cờ tướng? Bao nhiêu em chỉ biết chơi cờ vua? Sĩ số lớp là bao nhiêu? giai-toan-bang-so-do-ven-1.png Dựa vào sơ đồ Ven ta suy ra số học sinh chỉ biết chơi cờ tướng là $25-15=10$. Số học sinh chỉ biết chơi cờ vua là $30-15=15$. Do đó ta có sĩ số học sinh của lớp 10A là $10+15+15=40$. Ví dụ 2: Lớp 10B có $45$ học sinh, trong đó có $25$ em thích môn Văn, $20$ em thích môn Toán, $18$ em thích môn Sử, $6$ em không thích môn nào, $5$ em thích cả ba môn. Hỏi số em thích chỉ một môn trong ba môn trên là bao nhiêu? giai-toan-bang-so-do-ven-2.png Gọi: $a,b,c$ theo thứ tự là số học sinh chỉ thích môn Văn, Sử, Toán. $x$ là số học sịnh chỉ thích hai môn là Văn và Toán. $y$ là số học sịnh chỉ thích hai môn là Sử và Toán. $z$ là số học sịnh chỉ thích hai môn là Văn và Sử. Ta có số em thích ít nhất một môn là $45-6=39$. Dựa vào sơ đồ Ven ta có hệ phương trình: $\left\{ \begin{array}{l} a + x + z + 5 = 25(1)\\ b + y + z + 5 = 18(2)\\ c + x + y + 5 = 20(3)\\ x + y + z + a + b + c + 5 = 39(4) \end{array} \right.$ Cộng vế với vế $(1)$, $(2)$, $(3)$ ta có: $a+b+c+2\left( x+y+z \right)+15=63$ $(5).$ Từ $(4)$ và $(5)$ ta có: $a+b+c$ $+2\left( 39-5-a-b-c \right)+15=63$ $\Leftrightarrow a+b+c=20.$ Vậy chỉ có $20$ em thích chỉ một môn trong ba môn trên. Ví dụ 3: Trong lớp 10C có $16$ học sinh giỏi môn Toán, $15$ học sinh giỏi môn Lý và $11$ học sinh giỏi môn Hóa. Biết rằng có $9$ học sinh vừa giỏi Toán và Lý, $6$ học sinh vừa giỏi Lý và Hóa, $8$ học sinh vừa giỏi Hóa và Toán, trong đó chỉ có $11$ học sinh giỏi đúng hai môn. Hỏi có bao nhiêu học sinh của lớp: a. Giỏi cả ba môn Toán, Lý, Hóa. b. Giỏi đúng một môn Toán, Lý hoặc Hóa. giai-toan-bang-so-do-ven-3.png Gọi: $T,L,H$ lần lượt là tập hợp các học sinh giỏi môn Toán, Lý, Hóa. $B$ là tập hợp học sinh giỏi đúng hai môn. Theo giả thiết ta có: $n\left( T \right) = 16$, $n\left( L \right) = 15$, $n\left( H \right) = 11$, $n\left( B \right) = 11$, $n\left( {T \cap L} \right) = 9$, $n\left( {L \cap H} \right) = 6$, $n\left( {H \cap T} \right) = 8.$ a. Xét tổng $n(T \cap L)$ $ + n(L \cap H)$ $ + n(H \cap T)$ thì mỗi phần tử của tập hợp $T \cap L \cap H$ được tính ba lần do đó ta có: $n(T \cap L)$ $ + n(L \cap H)$ $ + n(H \cap T)$ $ – 3n\left( {T \cap L \cap H} \right)$ $ = n\left( B \right).$ Hay $n\left( {T \cap L \cap H} \right)$ $ = \frac{1}{3}\left[ {n(T \cap L) + n(L \cap H)} \right.$ $\left. { + n(H \cap T) – n\left( B \right)} \right] = 4.$ Suy ra có $4$ học sinh giỏi cả ba môn Toán, Lý, Hóa. b. Xét $n\left( {T \cap L} \right) + n\left( {L \cap T} \right)$ thì mỗi phần tử của tập hợp $T \cap L \cap H$ được tính hai lần do đó số học sinh chỉ giỏi đúng môn Toán là: $n\left( T \right)$ $ – \left[ {n\left( {T \cap L} \right) + n\left( {H \cap T} \right) – n\left( {T \cap L \cap H} \right)} \right]$ $ = 16 – \left( {9 + 8 – 4} \right) = 3.$ Tương tự, ta có: Số học sinh chỉ giỏi đúng môn Lý: $n\left( L \right)$ $ – \left[ {n\left( {T \cap L} \right) + n\left( {L \cap H} \right) – n\left( {T \cap L \cap H} \right)} \right]$ $ = 15 – \left( {9 + 6 – 4} \right) = 4.$ Số học sinh chỉ giỏi đúng môn Hóa: $n\left( H \right)$ $ – \left[ {n\left( {H \cap T} \right) + n\left( {L \cap H} \right) – n\left( {T \cap L \cap H} \right)} \right]$ $ = 11 – \left( {8 + 6 – 4} \right) = 1.$ Suy ra số học sinh giỏi đúng một môn Toán, Lý hoặc Hóa là: $3 + 4 + 1 = 8.$

    Bài viết mới nhất

    • Giải toán bằng sơ đồ Ven05/12/2018
    • Xác định tập hợp và phép toán trên tập hợp05/12/2018
    • Phương pháp chứng minh bằng phản chứng05/12/2018
    • Chủ đề 3: Mệnh đề chứa biến và mệnh đề chứa kí hiệu $\forall$, $\exists$05/12/2018
    • Chủ đề 2: Các phép toán về mệnh đề05/12/2018
    moon, 5/12/18 #1
(Bạn phải Đăng nhập hoặc Đăng ký để trả lời bài viết.) Show Ignored Content

Chia sẻ trang này

Tên tài khoản hoặc địa chỉ Email: Mật khẩu: Bạn đã quên mật khẩu? Duy trì đăng nhập Đăng nhập

Thống kê diễn đàn

Đề tài thảo luận: 6,071 Bài viết: 12,735 Thành viên: 18,036 Thành viên mới nhất: duychien.saigonapp

Chủ đề mới nhất

  • Tăng Giáp [8+] Phân tích bài thơ Đất nước... Tăng Giáp posted 6/8/20
  • Tăng Giáp Hướng dẫn viết dàn ý bài thơ... Tăng Giáp posted 6/8/20
  • Tăng Giáp [8+] Phân tích bài kí Ai đã đặt... Tăng Giáp posted 6/8/20
  • Tăng Giáp [8+] Phân tích truyện Vợ chồng... Tăng Giáp posted 6/8/20
  • Tăng Giáp [8+] Phân tích bài thơ tây tiến... Tăng Giáp posted 6/8/20
Đang tải... Tăng Giáp Trang chủ Diễn đàn > TOÁN HỌC > LỚP 10 > Chủ đề 1. MỆNH ĐỀ VÀ TẬP HỢP > Mệnh đề và tập hợp >

Từ khóa » Sơ đồ Ven Của Tập Hợp