Hệ Hai Phương Trình Bậc Nhất Hai ẩn: Lý Thuyết Và Bài Tập
Có thể bạn quan tâm
Hệ hai phương trình bậc nhất hai ẩn là gì? Hệ phương trình bậc nhất hai ẩn? Cần nắm được kiến thức gì về hệ hai phương trình bậc nhất hai ẩn, hệ bất phương trình bậc nhất hai ẩn, hệ phương trình bậc 2 hai ẩn? Lý thuyết, phương pháp, cách giải hệ hai phương trình bậc nhất hai ẩn như nào? Cách giải hệ phương trình bằng phương pháp thế? Cần lưu ý gì trong cách giải hệ phương trình bậc nhất 2 ẩn bằng định thức?… Đây là những vấn đề được rất nhiều các em học sinh quan tâm. Trong nội dung bài viết dưới đây, hãy cùng DINHNGHIA.VN đi tìm câu trả lời nhé!
MỤC LỤC
Hệ hai phương trình bậc nhất hai ẩn là gì?
Định nghĩa hệ hai phương trình bậc nhất hai ẩn
Hệ phương trình bậc nhất hai ẩn có dạng : \(\left\{\begin{matrix} ax+by=c\\ a’x+b’y=c’ \end{matrix}\right.\)
Trong đó, \(a,b,c,a’,b’,c’ \in \mathbb{R}\)
Minh họa tập nghiệm của hệ hai phương trình bậc nhất hai ẩn:
Gọi (d): ax + by = c; (d’): a’x + b’y = c’. Khi đó ta có
- \((d)\parallel (d’)\) thì hệ vô nghiệm
- \((d)\times (d’)\) thì hệ có nghiệm duy nhất
- \((d)\equiv (d’)\) thì hệ có vô số nghiệm
Hệ phương trình tương đương là gì? Hai hệ phương trình tương đương với nhau nếu chúng có cùng tập nghiệm.
Phương pháp giải hệ hai phương trình bậc nhất hai ẩn
Giải hệ phương trình bằng phương pháp thế
- Bước 1 : chọn một phương trình biểu diễn nghiệm đơn giản nhất.
- Bước 2 : thế vào phương trình còn lại.
Giải hệ phương trình bằng phương pháp đại số
- Bước 1 : cộng hay trừ từng vế hai phương trình của hệ phương trình cho ra phương trình mới.
- Bước 2 : dùng phương trình mới ấy thay thế cho một trong hai phương trình của hệ (và giữ nguyên phương trình kia).
Hệ bất phương trình bậc nhất hai ẩn
- Ví dụ về bất phương trình bậc nhất hai ẩn: \(\left\{\begin{matrix} 8x + 2y > 9\\ 3x – 7y < 22 \end{matrix}\right.\)
- Trong mặt phẳng tọa độ, ta gọi tập hợp các điểm có tọa độ thỏa mãn mọi bất phương trình trong hệ là miền nghiệm của hệ. Vậy miền nghiệm của hệ là giao các miền nghiệm của các bất phương trình trong hệ
- Để xác định miền nghiệm của hệ, ta dùng phương pháp biểu diễn hình học như sau:
- Với mỗi bất phương trình trong hệ, ta xác định miền nghiệm của nó và gạch bỏ miền còn lại.
- Sau khi làm như trên lần lượt đối với tất cả các bất phương trình trong hệ trên cùng một mặt phẳng tọa độ, miền còn lại không bị gạch chính là miền nghiệm của hệ bất phương trình đã cho.
Một số dạng hệ phương trình bậc 2 hai ẩn
Dạng 1: Hệ phương trình gồm một phương trình bậc nhất và một phương trình bậc hai
Phương pháp áp dụng
Để giải hệ phương trình: \(\left\{\begin{matrix} Ax + By +C = 0\, (1)\\ ax^{2} + bxy + cy^{2} + dx + ey + f = 0 \, (2) \end{matrix}\right.\)
Chúng ta có thể lựa chọn một trong ba cách sau:
Cách 1: Phương pháp thế
Ta thực hiện theo các bước sau:
- Bước 1: Từ phương trình (1) rút x hoặc y rồi thế vào phương trình (2). Khi đó, ta được phương trình bậc hai theo x hoặc y, giả sử: f(x, m) = 0. (3)
- Bước 2: Thực hiện giải (3) theo yêu cầu của đầu bài.
Cách 2: Phương pháp đồ thị
Ta thực hiện theo các bước sau:
Bước 1: Ta có:
- Tập hợp các điểm thoả mãn (1) thuộc đường thẳng (d): Ax + By + C = 0
- Tập hợp các điểm thoả mãn (2) với b = 0 thuộc đường cong \((S) = ax^{2} + cy^{2} +D_{x} +ey +f =0\)
Bước 2: Khi đó số nghiệm của hệ là số giao điểm của đường thẳng (d) với đường (S).
Chú ý: Khi sử dụng phương pháp này các em học sinh cần nhớ lại điều kiện tiếp xúc của đường thẳng (d) với đường tròn, Elíp, Hypebol, Parabol.
Ví dụ 1: Cho hệ phương trình:
\(\left\{\begin{matrix} x – y +1 = 0\\ 2mx^{2} -my^{2} +4x +2m -3 =0 \end{matrix}\right.\). Giải hệ phương trình với m = 3
Cách giải
Biến đổi hệ phương trình về dạng: \(\left\{\begin{matrix} y = x+1\\ 2mx^{2} – m(x+1)^{2} + 4x +2m – 3=0 \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} y = x+1\\ mx^{2} – 2(m-2)x +m -3 =0 \end{matrix}\right.\)
- Với m = 3
\(\Leftrightarrow \left\{\begin{matrix} y = x+1\\ 6x^{2} – 3(x+1)^{2} + 4x + 3=0 \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} y= x+1\\ \left[\begin{array}{l} x=0 \\ x=\frac{2}{3} \end{array}\right. \end{matrix}\right. \Leftrightarrow \left[\begin{array}{l} \left\{\begin{matrix} x = 0\\ y = 1 \end{matrix}\right.\\ \left\{\begin{matrix} x = \frac{2}{3}\\ y = \frac{5}{3} \end{matrix}\right. \end{array}\right.\)
Vậy với m = 3, phương trình có 2 cặp nghiệm là \((0;1), (\frac{2}{3};\frac{5}{3})\)
Dạng 2: Hệ phương trình quy về hệ phương trình bậc hai hai ẩn
Phương pháp giải cụ thể như sau:
Đưa về phương trình tích
Việc phân tích thành tích có thể có ngay từ một phương trình trong hệ hoặc qua phép biến đổi đại số(phép thế, cộng đại số) ta thu về được phương trình tích.
Đặt ẩn phụ
Điều quan trọng là ta cần phát hiện ra ẩn phụ. Thường chúng ta cần biến đổi đại số(cộng trừ nhân, chia với mộ số, biểu thức) thì mới xuất hiện ẩn phụ.
Ví dụ 2: Giải hệ phương trình sau:
\(\left\{\begin{matrix} x^{2} + y^{2} + 6xy – \frac{1}{(x-y)^{2} + \frac{9}{8} = 0}\\ 2y – \frac{1}{x – y} + \frac{5}{4} = 0 \end{matrix}\right.\)
Cách giải:
Điều kiện: \(x \neq y\)
Hệ đã cho tương đương:
\(\left\{\begin{matrix} 2(x+y)^{2} – (y-x)^{2} – \frac{1}{(y-x)^{2}} + \frac{9}{8} = 0\\ (y-x+\frac{1}{y-x} + (x+y)+\frac{5}{4} = 0) \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} 2(x+y)^{2} – (y-x+\frac{1}{y-x})^{2}+\frac{25}{8} = 0\\ (y-x+\frac{1}{y-x})+ (x+y)+\frac{5}{4} = 0 \end{matrix}\right.\)
Đặt \(\left\{\begin{matrix} x+y = a\\ y-x +\frac{1}{y-x} = b \end{matrix}\right.\)
\(\left | b \right |\geq 2\)
\(\left | b \right |\geq 2\)
Hệ trở thành:
\(\left\{\begin{matrix} a+b = \frac{5}{4}\\ 2a^{2} – b^{2} = -\frac{25}{8} \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} a = \frac{5}{4}\\ b = -\frac{5}{2} \end{matrix}\right.\)
\(\Leftrightarrow \left[\begin{array}{l} \left\{\begin{matrix} y + x = \frac{5}{4}\\ y – x = -2 \end{matrix}\right.\\ \left\{\begin{matrix} y + x = \frac{5}{4}\\ y – x = -\frac{1}{2} \end{matrix}\right. \end{array}\right. \Leftrightarrow \left[\begin{array}{l} \left\{\begin{matrix} x = \frac{13}{8}\\ y = -\frac{3}{8} \end{matrix}\right.\\ \left\{\begin{matrix} x = \frac{7}{8}\\ y = \frac{3}{8} \end{matrix}\right. \end{array}\right.\)
=> Vậy hệ có nghiệm \((x;y) = (\frac{7}{8};\frac{3}{8}),\, (\frac{13}{8}; -\frac{3}{8})\)
Bài viết trên đây đã cung cấp cho các bạn những kiến thức về hệ hai phương trình bậc nhất hai ẩn, hệ phương trình bậc nhất hai ẩn, hệ bất phương trình bậc nhất hai ẩn. Bên cạnh đó, những thông tin trong bài viết đã giúp bạn nắm được về lý thuyết, phương pháp, cách giải hệ hai phương trình bậc nhất hai ẩn. Chúc bạn luôn học tốt!
Rate this post Please follow and like us:Từ khóa » Hệ Phương Trình Bậc Nhất Hai ẩn Bằng định Thức
-
Giải Hệ Phương Trình Bậc Nhất Hai ẩn Bằng Phương Pháp Tính định ...
-
Toán 10 Bài 3: Phương Trình Và Hệ Phương Trình Bậc Nhất Nhiều ẩn
-
Giải Và Biện Luận Hệ Hai Phương Trình Bậc Nhất Hai ẩn Có Chứa Tham ...
-
Giải Phương Trình Bậc Nhất 2 Ẩn Bằng Định Thức, ✔️ Cẩm Nang ...
-
Chuyên đề Hệ Phương Trình Bậc Nhất Hai ẩn Số - Trường Quốc Học
-
5 Phương Pháp Giải Hệ Hai Phương Trình Bậc Nhất Hai ẩn
-
Cách Giải Hệ Phương Trình Bậc Nhất 2 ẩn Với Phương Pháp Thế Và ...
-
Giải Hệ Phương Trình Bậc Nhất 2 ẩn Bằng định Thức - .vn
-
Giáo án Tự Chọn Toán 10 Tiết 26 Chủ đề: Phương Trình Và Hệ ...
-
Cách Giải Các Hệ Phương Trình Khó ? Toán 10 - Tinh Dầu LATIMA
-
[Toán 9] Một Phương Pháp Giải Hệ Phương Trình Nhanh
-
Hệ Phương Trình Bậc Nhất Nhiều ẩn – Chuyên đề đại Số 10
-
Giải Hệ Phương Trình Bậc Nhất 2 ẩn Trong C/C++