Hình Học 10 Bài 3: Phương Trình đường Elip

YOMEDIA NONE Trang chủ Toán 10 Chương 3: Phương Pháp Tọa Độ Trong Mặt Phẳng Hình học 10 Bài 3: Phương trình đường elip ADMICRO Lý thuyết10 Trắc nghiệm19 BT SGK 45 FAQ

Trong bài học này chúng ta sẽ được học về khái niệm Phương trình đường elip. Với bài học này, chúng ta sẽ hiểu khái niệm về phương trình chính tắc của đường elip, hình dạng một elip và liên hệ giữa đường tròn và đường elip.

ATNETWORK YOMEDIA

1. Tóm tắt lý thuyết

1.1. Định nghĩa đường elip

1.2. Phương trình chính tắc của elip

1.3. Hình dạng của elip

1.4. Liên hệ giữa đường tròn và đường elip

2. Bài tập minh hoạ

3. Luyện tập bài 3 chương 3 hình học 10

3.1. Trắc nghiệm về phương trình đường elip

3.2. Bài tập SGK & Nâng cao về phương trình đường elip

4. Hỏi đáp về bài 3 chương 3 hình học 10

Tóm tắt lý thuyết

1.1. Định nghĩa đường elip

Cho hai điểm cố định F1, F2 và một độ dài không đổi 2a lớn hơn F1F2. Elip là tập hợp các điểm M trong mặt phẳng sao cho

F1M+F2M=2a

Các điểm F1 và F2 gọi là các tiêu điểm của elip. Độ dài F1F2 gọi là tiêu cự của elip.

1.2. Phương trình chính tắc của elip

Cho elip (E) có các tiêu điểm F1 và F2. Điểm M thuộc elip khi và chỉ khi F1M+F2M=2a. Chọn hệ trục tọa độ Oxy sa cho F1=(-c;0) và F2=(c;0). Khi đó phương trình chính tắc của elip là:

\(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\)

trong đó b2 = a2 - c2

1.3. Hình dạng của elip

+ (E) có trục đối xứng là Ox, Oy và có tâm đối xứng là O

+ Các điểm A1, A2, B1, B2 gọi là các đỉnh của elip

+ Đoạn thẳng A1A2 gọi là trục lớn, đoạn thẳng B1B2 gọi là trục nhỏ của elip.

1.4. Liên hệ giữa đường tròn và đường elip

+ Từ hệ thức b2 = a2 - c2 ta thấy nếu tiêu cự càng nhỏ thì b càng gần a, tức là trục nhỏ của elip càng gần trục lớn. Lúc đó elip có dạng gần như đường tròn.

+ Cho đường tròn (C) có phương trình \({x^2} + {y^2} = {a^2}\)

Với mỗi điểm M(x;y) thuộc đường tròn, xét điểm M'(x';y') sao cho \(\left\{ \begin{array}{l} x' = x\\ y' = \frac{b}{a}y \end{array} \right.\left( {0 < b < a} \right)\)

thì tập hợp các điểm M' có tọa độ thỏa phương trình \(\frac{{{x'^2}}}{{{a^2}}} + \frac{{{y'^2}}}{{{b^2}}} = 1\) là một elip (E)

Ta nói đường tròn (C) được co thành elip (E).

Bài tập minh họa

Ví dụ 1: Xác định độ dài các trục, tọa độ các tiêu điểm, tọa độ các đỉnh của elip có phương trình

\(\frac{{{x^2}}}{9} + \frac{{{y^2}}}{1} = 1\)

Hướng dẫn:

Ta có a2 = 9⇒ a = 3, b2 = 1 ⇒ b = 1

Vậy c2 = a2 - b2 = 9 - 1 = 8 ⇒ c = \(2\sqrt 2 \)

Độ dài trục lớn là A1A2 = 2a = 6

Độ dài trục nhỏ là: B1B2 = 2b = 2

Tiêu điểm là: \({F_1}\left( { - 2\sqrt 2 ;0} \right),{F_2}\left( {2\sqrt 2 ;0} \right)\)

Tọa độ các đỉnh là \({A_1}\left( { - 3;0} \right),{A_2}\left( {3;0} \right),{B_1}\left( {0; - 1} \right),{B_2}\left( {0;1} \right)\)

Ví dụ 2: Lập phương trình chính tắc của elip, biết:

a) (E) đi qua điểm \(M\left( {\frac{3}{{\sqrt 5 }};\frac{4}{{\sqrt 5 }}} \right)\) và M nhìn hai tiêu điểm \({F_1},{F_2}\) dưới một góc vuông.

b) (E) đi qua \(M\left( {\sqrt 3 ;\frac{{\sqrt 6 }}{2}} \right)\) và một tiêu điểm F nhìn trục nhỏ dưới góc 60o.

Hướng dẫn:

a) Do (E) đi qua M nên \(\frac{9}{{5{a^2}}} + \frac{{16}}{{5{b^2}}} = 1\) (1); Lại có \({\widehat {{F_1}MF}_2} = {90^0} \Leftrightarrow OM = \frac{1}{2}{F_1}{F_2} = c \Leftrightarrow c = \sqrt 5 \)

Như vậy ta có hệ điều kiện \(\left\{ \begin{array}{l} \frac{9}{{5{a^2}}} + \frac{{16}}{{5{b^2}}} = 1\\ {a^2} - {b^2} = 5 \end{array} \right.\). Giải hệ ta được \({a^2} = 9;{b^2} = 4 \Rightarrow (E):\frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} = 1\).

b) Tiêu điểm F nhìn trục nhỏ dưới góc 60o nên tam giác FB1B2 đều (B1, B2 là hai đỉnh trên trục nhỏ), suy ra \(c = b\sqrt 3 \Rightarrow a = 2b\), từ đó tìm ra \((E):\frac{{{x^2}}}{9} + \frac{{{y^2}}}{{\frac{9}{4}}} = 1\)

Ví dụ 3: Cho elip \((E):\frac{{{x^2}}}{4} + \frac{{{y^2}}}{1} = 1\). Tìm điểm \(M \in (E)\) sao cho \(M{F_1} = 2M{F_2}\).

Hướng dẫn:

Gọi \(M(x;y) \Rightarrow M{F_1} = 2 + \frac{{\sqrt 3 }}{2}x;M{F_2} = 2 - \frac{{\sqrt 3 }}{2}x\). Từ \(M{F_1} = 2M{F_2} \Rightarrow x = \frac{4}{{3\sqrt 3 }}\)

Từ đó tìm ra \(y = \pm \frac{{\sqrt {23} }}{{3\sqrt 3 }}\). Vậy có hai điểm M cần tìm là \(M\left( {\frac{4}{{3\sqrt 3 }}; \pm \frac{{\sqrt {23} }}{{3\sqrt 3 }}} \right)\).

3. Luyện tập Bài 3 chương 3 hình học 10

Trong phạm vi bài học HỌC247 chỉ giới thiệu đến các em những nội dung cơ bản nhất về Phương trình đường elip và phương pháp giải các dạng toán liên quan đến đường elip.

3.1 Trắc nghiệm về phương trình đường elip

Để cũng cố bài học xin mời các em cũng làm Bài kiểm tra Trắc nghiệm Hình học 10 Bài 3 để kiểm tra xem mình đã nắm được nội dung bài học hay chưa.

  • Câu 1:

    Phương trình chính tắc của elip có độ dài trục lơn bằng 8, độ dài trục nhỏ bằng 6 là:

    • A. \(\frac{{{x^2}}}{{64}} + \frac{{{y^2}}}{36} = 1\)
    • B. \(\frac{{{x^2}}}{{16}} - \frac{{{y^2}}}{9} = 1\)
    • C. \(\frac{{{x^2}}}{{9}} + \frac{{{y^2}}}{16} = 1\)
    • D. \(\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{9} = 1\)
  • Câu 2:

    Phương trình của elip có 1 tiêu điểm F2(1;0) và đi qua điểm M(2; -2/√5) là:

    • A. \(\frac{{{x^2}}}{9} + \frac{{{y^2}}}{8} = 1\)
    • B. 4x2+5y2=1
    • C. \(\frac{{{x^2}}}{5} + \frac{{{y^2}}}{4} = 1\)
    • D. 5x2+4y2=1
  • Câu 3:

    Cho elip có phương trình 4x2+9y2=36. Khi đó hình chữ nhật cơ sở có diện tích bằng:

    • A. 6
    • B. 12
    • C. 24
    • D. 36

Câu 4-10: Mời các em đăng nhập xem tiếp nội dung và thi thử Online để củng cố kiến thức và nắm vững hơn về bài học này nhé!

3.2 Bài tập SGK và Nâng Cao về phương trình đường elip

Bên cạnh đó các em có thể xem phần hướng dẫn Giải bài tập Hình học 10 Bài 3 sẽ giúp các em nắm được các phương pháp giải bài tập từ SGK Hình học 10 Cơ bản và Nâng cao.

Bài tập 1 trang 88 SGK Hình học 10

Bài tập 2 trang 88 SGK Hình học 10

Bài tập 3 trang 88 SGK Hình học 10

Bài tập 4 trang 88 SGK Hình học 10

Bài tập 5 trang 88 SGK Hình học 10

Bài tập 3.28 trang 163 SBT Hình học 10

Bài tập 3.29 trang 163 SBT Hình học 10

Bài tập 3.30 trang 163 SBT Hình học 10

Bài tập 3.31 trang 163 SBT Hình học 10

Bài tập 3.32 trang 164 SBT Hình học 10

Bài tập 3.33 trang 164 SBT Hình học 10

Bài tập 3.34 trang 164 SBT Hình học 10

Bài tập 3.35 trang 164 SBT Hình học 10

Bài tập 3.36 trang 164 SBT Hình học 10

Bài tập 30 trang 102 SGK Hình học 10 NC

Bài tập 31 trang 103 SGK Hình học 10 NC

Bài tập 32 trang 103 SGK Hình học 10 NC

Bài tập 33 trang 103 SGK Hình học 10 NC

Bài tập 34 trang 103 SGK Hình học 10 NC

Bài tập 35 trang 103 SGK Hình học 10 NC

4. Hỏi đáp về bài 3 chương 3 hình học 10

Nếu có thắc mắc cần giải đáp các em có thể để lại câu hỏi trong phần Hỏi đáp, cộng đồng Toán HỌC247 sẽ sớm trả lời cho các em.

-- Mod Toán Học 10 HỌC247

NONE

Bài học cùng chương

Bài 1: Phương trình đường thẳng Hình học 10 Bài 1: Phương trình đường thẳng Bài 2: Phương trình đường tròn Hình học 10 Bài 2: Phương trình đường tròn Ôn tập chương 3 Phương pháp tọa độ trong mặt phẳng Hình học 10 Ôn tập chương 3 Phương pháp tọa độ trong mặt phẳng ADSENSE ADMICRO Bộ đề thi nổi bật UREKA AANETWORK

XEM NHANH CHƯƠNG TRÌNH LỚP 10

Toán 10

Toán 10 Kết Nối Tri Thức

Toán 10 Chân Trời Sáng Tạo

Toán 10 Cánh Diều

Giải bài tập Toán 10 Kết Nối Tri Thức

Giải bài tập Toán 10 CTST

Giải bài tập Toán 10 Cánh Diều

Trắc nghiệm Toán 10

Ngữ văn 10

Ngữ Văn 10 Kết Nối Tri Thức

Ngữ Văn 10 Chân Trời Sáng Tạo

Ngữ Văn 10 Cánh Diều

Soạn Văn 10 Kết Nối Tri Thức

Soạn Văn 10 Chân Trời Sáng tạo

Soạn Văn 10 Cánh Diều

Văn mẫu 10

Tiếng Anh 10

Giải Tiếng Anh 10 Kết Nối Tri Thức

Giải Tiếng Anh 10 CTST

Giải Tiếng Anh 10 Cánh Diều

Trắc nghiệm Tiếng Anh 10 KNTT

Trắc nghiệm Tiếng Anh 10 CTST

Trắc nghiệm Tiếng Anh 10 CD

Giải Sách bài tập Tiếng Anh 10

Vật lý 10

Vật lý 10 Kết Nối Tri Thức

Vật lý 10 Chân Trời Sáng Tạo

Vật lý 10 Cánh Diều

Giải bài tập Lý 10 Kết Nối Tri Thức

Giải bài tập Lý 10 CTST

Giải bài tập Lý 10 Cánh Diều

Trắc nghiệm Vật Lý 10

Hoá học 10

Hóa học 10 Kết Nối Tri Thức

Hóa học 10 Chân Trời Sáng Tạo

Hóa học 10 Cánh Diều

Giải bài tập Hóa 10 Kết Nối Tri Thức

Giải bài tập Hóa 10 CTST

Giải bài tập Hóa 10 Cánh Diều

Trắc nghiệm Hóa 10

Sinh học 10

Sinh học 10 Kết Nối Tri Thức

Sinh học 10 Chân Trời Sáng Tạo

Sinh học 10 Cánh Diều

Giải bài tập Sinh 10 Kết Nối Tri Thức

Giải bài tập Sinh 10 CTST

Giải bài tập Sinh 10 Cánh Diều

Trắc nghiệm Sinh học 10

Lịch sử 10

Lịch Sử 10 Kết Nối Tri Thức

Lịch Sử 10 Chân Trời Sáng Tạo

Lịch Sử 10 Cánh Diều

Giải bài tập Lịch Sử 10 KNTT

Giải bài tập Lịch Sử 10 CTST

Giải bài tập Lịch Sử 10 Cánh Diều

Trắc nghiệm Lịch sử 10

Địa lý 10

Địa Lý 10 Kết Nối Tri Thức

Địa Lý 10 Chân Trời Sáng Tạo

Địa Lý 10 Cánh Diều

Giải bài tập Địa Lý 10 KNTT

Giải bài tập Địa Lý 10 CTST

Giải bài tập Địa Lý 10 Cánh Diều

Trắc nghiệm Địa lý 10

GDKT & PL 10

GDKT & PL 10 Kết Nối Tri Thức

GDKT & PL 10 Chân Trời Sáng Tạo

GDKT & PL 10 Cánh Diều

Giải bài tập GDKT & PL 10 KNTT

Giải bài tập GDKT & PL 10 CTST

Giải bài tập GDKT & PL 10 CD

Trắc nghiệm GDKT & PL 10

Công nghệ 10

Công nghệ 10 Kết Nối Tri Thức

Công nghệ 10 Chân Trời Sáng Tạo

Công nghệ 10 Cánh Diều

Giải bài tập Công nghệ 10 KNTT

Giải bài tập Công nghệ 10 CTST

Giải bài tập Công nghệ 10 CD

Trắc nghiệm Công nghệ 10

Tin học 10

Tin học 10 Kết Nối Tri Thức

Tin học 10 Chân Trời Sáng Tạo

Tin học 10 Cánh Diều

Giải bài tập Tin học 10 KNTT

Giải bài tập Tin học 10 CTST

Giải bài tập Tin học 10 Cánh Diều

Trắc nghiệm Tin học 10

Cộng đồng

Hỏi đáp lớp 10

Tư liệu lớp 10

Xem nhiều nhất tuần

Đề thi giữa HK1 lớp 10

Đề thi giữa HK2 lớp 10

Đề thi HK1 lớp 10

Đề cương HK1 lớp 10

Đề thi HK2 lớp 10

Video bồi dưỡng HSG môn Toán

Toán 10 Kết nối tri thức Bài 1: Mệnh đề

Toán 10 Cánh Diều Bài tập cuối chương 1

Toán 10 Chân trời sáng tạo Bài 2: Tập hợp

Soạn bài Ra-ma buộc tội - Ngữ văn 10 Tập 1 Cánh Diều

Soạn bài Chữ người tử tù - Nguyễn Tuân - Ngữ văn 10 KNTT

Soạn bài Thần Trụ Trời - Ngữ văn 10 CTST

Văn mẫu về Cảm xúc mùa thu (Thu hứng)

Văn mẫu về Bình Ngô đại cáo

Văn mẫu về Chữ người tử tù

Văn mẫu về Tây Tiến

YOMEDIA YOMEDIA ×

Thông báo

Bạn vui lòng đăng nhập trước khi sử dụng chức năng này.

Bỏ qua Đăng nhập ×

Thông báo

Bạn vui lòng đăng nhập trước khi sử dụng chức năng này.

Đồng ý ATNETWORK ON zunia.vn QC Bỏ qua >>

Từ khóa » Hình Elip Lớp 10