Hình Học 12 Bài 1: Hệ Tọa độ Trong Không Gian - Hoc247

YOMEDIA NONE Trang chủ Toán 12 Chương 3: Phương Pháp Tọa Độ Trong Không Gian Hình học 12 Bài 1: Hệ tọa độ trong không gian ADMICRO Lý thuyết10 Trắc nghiệm36 BT SGK 260 FAQ

Ở lớp 10, các em đã được học các dạng toán sử dụng hệ tọa độ trong mặt phẳng. Trong chương trình lớp 12, các nội dung đã được học đó sẽ được kế thừa như một kiến thức nền tảng để mở rộng ra không gian ba chiều được gọi là phương pháp tọa độ trong không gian. Nội dung trong chương này xoay quanh các vấn đề về tọa độ điểm, vectơ, phương trình, góc, khoảng cách giữa các đối tượng trong không gian như đường thẳng, mặt phẳng, mặt cầu,...Sau đây, là nội dung bài học đâu tiên Hệ tọa độ trong không gian. Qua bài học này các em sẽ được tìm hiểu, ôn tập lại những khái niệm đã học, cũng như sẽ thấy được sự khác biệt của phương pháp tọa độ trong mặt phẳng và phương pháp tọa độ trong không gian. Bên cạnh đó các em sẽ biết được các dạng và cách viết phương trình mặt cầu.

ATNETWORK YOMEDIA

1. Video bài giảng

2. Tóm tắt lý thuyết

2.1. Tọa độ của điểm và của vectơ

2.2. Biểu thức tọa độ của các phép toán vectơ

​2.3. Tích vô hướng

2.4. Phương trình mặt cầu

3. Bài tập minh hoạ

4. Luyện tập Bài 1 Chương 3 Toán 12

4.1. Trắc nghiệm

4.2. Bài tập SGK

5. Hỏi đáp về Bài 1 Chương 3 Toán 12

Tóm tắt lý thuyết

2.1. Tọa độ của điểm và của vectơ

a) Hệ tọa độ

- Trong không gian, cho ba trục xOx', yOy', zOz' vuông góc với nhau từng đôi một.

- Các vectơ \(\overrightarrow i ,\,\,\overrightarrow j ,\,\overrightarrow k\) lần lượt là các vectơ đơn vị trên các trục xOx', yOy', zOz' với: \(\left | \vec{i} \right |=\left | \vec{j} \right |=\left | \vec{k} \right |=1.\)

- Hệ trục như vậy được gọi là hệ trục tọa độ Oxyz, với O là gốc tọa độ.

b) Tọa độ của vectơ trong không gian

- Trong không gian Oxyz, cho vectơ \(\vec{u}\) tồn tại duy nhất bộ số \((x,y,z)\) sao cho: \(\overrightarrow{u}=(x;y;z)\)\(\Leftrightarrow \vec{u}=x\vec{i}+y\vec{j}+z\vec{k}.\)

- Bộ số: \((x,y,z)\) được gọi là tọa độ của vectơ \(\vec{u}\).

c) Tọa độ điểm trong không gian

- Trong không gian Oxyz, cho điểm A tùy ý tồn tại duy nhất bộ số \((x_A,y_A,z_A)\) sao cho: \(A(x_A,y_A,z_A)\Leftrightarrow \overrightarrow{OA}=(x_A;y_A;z_A).\)

- Bộ số \((x_A,y_A,z_A)\) được gọi là tọa độ điểm A.

2.2. Biểu thức tọa độ của các phép toán vectơ

- Cho hai vectơ \(\vec{u}=(x;y;z)\) và \(\vec{u'}=(x';y'; z')\):

+ \(\vec{u}+\vec{u'}=(x+x';y+y';z+ z')\)

+ \(\vec{u}-\vec{u'}=(x-x';y-y';z- z')\)

+ \(k\vec{u}=(kx;ky;kz)\)

+ \(\vec{u}=u'\Leftrightarrow \left\{\begin{matrix} x=x'\\ y=y'\\ z=z' \end{matrix}\right.\)

+ \(\vec{u}=\vec{u'}\) cùng phương \(\Leftrightarrow \left\{\begin{matrix} x=kx'\\ y=ky'\\ z=kz' \end{matrix}\right.\)

+ \(\left | \vec{u} \right |=\sqrt{x^2+y^2+z^2}\)

- Cho hai điểm \(A(x_A,y_A,z_A)\); \(B(x_B,y_B,z_B)\):

+ \(\overrightarrow{AB}=(x_B-x_A;y_B-y_A;z_B-z_A)\)

+ \(AB=\sqrt{(x_B-x_A)^2+(y_B-y_A)^2+(z_B-z_A)^2}\)

+ \(\overrightarrow{IA}=k.\overrightarrow{IB}(k\neq 1)\Leftrightarrow \left\{\begin{matrix} x_I=\frac{x_A-k.x_B}{1-k}\\ \\ y_I=\frac{y_A-k.y_B}{1-k}\\ \\ z_I=\frac{z_A-k.z_B}{1-k} \end{matrix}\right.\)

+ Đặc biệt I là trung điểm AB thì: \(\left\{\begin{matrix} x_I=\frac{x_A+x_B}{2}\\ \\ y_I=\frac{y_A+y_B}{2}\\ \\ z_I=\frac{z_A+z_B}{2} \end{matrix}\right.\)

+ G là trọng tâm \(\Delta ABC\): \(\left\{\begin{matrix} x_G=\frac{x_A+x_B+x_C}{3}\\ \\ y_G=\frac{y_A+y_B+y_C}{3}\\ \\ z_G=\frac{z_A+z_B+z_C}{3} \end{matrix}\right.\)

+ G là trọng tâm của tứ diện ABCD: \(\left\{\begin{matrix} x_G=\frac{x_A+x_B+x_C+x_D}{4}\\ \\ y_G=\frac{y_A+y_B+y_C+y_D}{4}\\ \\ z_G=\frac{z_A+z_B+z_C+z_D}{4} \end{matrix}\right.\)

​2.3. Tích vô hướng

- Công thức tính tích vô hướng: \(\vec{a}.\vec{b}=\left | \vec{a} \right |.\left | \vec{b} \right |.cos(\vec{a},\vec{b})\).

- Biểu thức tọa độ của tích vô hướng: \(\left.\begin{matrix} \vec{a}=(x_1;y_1;z_1)\\ \vec{b}=(x_2;y_2;z_2) \end{matrix}\right\} \vec{a}.\vec{b} = x_1.x_2 + y_1.y_2 + z_1.z_2\).

- Công thức tính góc giữa hai vectơ: \(cos(\vec a,\vec b) = \frac{{\vec a.\vec b}}{{\left| {\vec a} \right|.\left| {\vec b} \right|}}.\)

2.4. Phương trình mặt cầu

- Trong không gian Oxyz, mặt cầu tâm I(a;b;c), bán kính R có phương trình: \((x-a)^2+(y-b)^2+(z-c)^2=R^2.\)

- Nhận xét: Phương trình mặt cầu có thể viết dưới dạng \(x^2+y^2+z^2-2Ax-2By-2Cz+D=0\), điều kiện \(A^2+B^2+C^2-D> 0\).

- Khi đó, mặt cầu có tâm \(I(A;B;C)\), bán kính \(R = \sqrt {{A^2} + {B^2} + {C^2} - D} .\)

Bài tập minh họa

Ví dụ 1:

Cho ba vectơ \(\vec a=(1;m;2),\vec b=(m+1;2;1),\vec c=(0;m-2;2).\)

a) Tìm m để \(\vec a\) vuông góc \(\vec b.\)

b) Tìm m để \(\left| {\overrightarrow a + \overrightarrow b } \right| = \left| {\overrightarrow c } \right|.\)

Lời giải:

a) Ta có: \(\overrightarrow a \bot \overrightarrow b \Rightarrow \overrightarrow a .\overrightarrow b = 0 \Leftrightarrow m + 1 + 2m + 2 = 0 \Leftrightarrow m = - 1.\)

b) Ta có: \(\overrightarrow a + \overrightarrow b = \left( {m + 2;m + 2;3} \right)\)

Do đó:

\(\begin{array}{l} \left| {\overrightarrow a + \overrightarrow b } \right| = \left| {\overrightarrow c } \right| \Leftrightarrow {\left| {\overrightarrow a + \overrightarrow b } \right|^2} = {\left| {\overrightarrow c } \right|^2}\\ \Leftrightarrow {\left( {m + 2} \right)^2} + {(m + 2)^2} + 9 = {(m - 2)^2} + 4\\ \Leftrightarrow {m^2} + 12m + 9 = 0 \Leftrightarrow m = - 6 \pm \sqrt 3 . \end{array}\)

Ví dụ 2:

Trong hệ trục tọa độ Oxy cho \(\overrightarrow a = (1; - 1;0),\,\overrightarrow b = ( - 1;1;2),\,\overrightarrow c = \overrightarrow i - 2\overrightarrow j ,\,\overrightarrow d = \overrightarrow i\).

a) Xác định t để vectơ \(\overrightarrow u = \left( {2;2t - 1;0} \right)\) cùng phương với \(\overrightarrow a .\)

b) Tìm các số thực m,n,p để \(\overrightarrow d = m\overrightarrow a - n\overrightarrow b + p\overrightarrow c\).

Lời giải:

a) \(\vec u\)cùng phương với \(\vec a\) khi:

\(\begin{array}{l} \left\{ \begin{array}{l} 1 = 2k\\ - 1 = (2t - 1)k\\ 0 = 0k \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} 1 = 2k\\ - 1 = (2t - 1)k \end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l} k = \frac{1}{2}\\ - 1 = (2t - 1)k \end{array} \right. \end{array}\)

Với \(t=\frac{1}{2}\) thì ta có: \(\left\{ \begin{array}{l} k = \frac{1}{2}\\ - 1 = 0 \end{array} \right.\) (Vô nghiệm)

Với \(t \ne \frac{1}{2}\) thì ta có: \(\left\{ \begin{array}{l} k = \frac{1}{2}\\ k = \frac{{ - 1}}{{2t - 1}} \end{array} \right. \Leftrightarrow \frac{{ - 1}}{{2t - 1}} = \frac{1}{2} \Leftrightarrow t = -\frac{{ 1}}{2}\)

b) Ta có: \(\overrightarrow c = \overrightarrow i - 2\overrightarrow j = (1;0;0) - 2(0;1;0) = (1; - 2;0)\)

\(\begin{array}{l} \overrightarrow d = m\overrightarrow a - n\overrightarrow b + p\overrightarrow c \\ \Leftrightarrow (1;0;0) = m(1; - 1;0) - n( - 1;1;2) + p(1; - 2;0)\\ \Leftrightarrow \left\{ \begin{array}{l} m + n + p = 1\\ - m - n - 2p = 0\\ 0m - 2n + 0p = 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} m = 2\\ n = 0\\ p = - 1 \end{array} \right. \end{array}\)

Vậy m=2;n=0;p=-1.

Ví dụ 3:

Cho A(3;0;4), B(1;2;3), C(9;6;4). Tìm:

a) Trọng tâm tam giác ABC.

b) Tọa độ đỉnh D để ABCD là hình bình hành.

c) Tọa độ giao điểm hai đường chéo của hình bình hành ABCD.

Lời giải:

a) Gọi G là trọng tâm tam giác ABC, ta có:

\(\left\{ \begin{array}{l} {x_G} = \frac{{{x_A} + {x_B} + {x_C}}}{3}\\ {y_G} = \frac{{{y_A} + {y_B} + {y_C}}}{3}\\ {z_G} = \frac{{{z_A} + {z_B} + {z_C}}}{3} \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} {x_G} = \frac{{13}}{3}\\ {y_G} = \frac{8}{3}\\ {z_G} = \frac{{11}}{3} \end{array} \right.\)

Vậy \(G\left( {\frac{{11}}{3};\frac{8}{3};\frac{{11}}{3}} \right).\)

b) Gọi \(D\left( {{x_D};{y_D};{z_D}} \right)\)

\(\begin{array}{l} \overrightarrow {AB} = ( - 2;2; - 1)\\ \overrightarrow {DC} = (9 - {x_D};6 - {y_D};4 - {z_D}) \end{array}\)

Để ABCD là hình bình hành thì:

\(\overrightarrow {AB} = \overrightarrow {DC}\)

Hay: \(\left\{ \begin{array}{l} - 2 = 9 - {x_D}\\ 2 = 6 - {y_D}\\ - 1 = 4 - {z_D} \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} {x_D} = 11\\ {y_D} = 4\\ {z_D} = 5 \end{array} \right. \Rightarrow D(11;4;5)\)

c) Gọi I là giao điểm hai đường chéo AC và BD thì:

I là trung điểm của AC \(\Rightarrow \left\{ \begin{array}{l} {x_I} = \frac{{{x_A} + {x_C}}}{2} = 6\\ {y_I} = \frac{{y{}_A + {y_C}}}{2} = 3\\ {z_I} = \frac{{{z_A} + {z_C}}}{2} = 4 \end{array} \right. \Rightarrow I(6,3,4)\).

Ví dụ 4:

Trong mặt phẳng (P) cho hình chóp S.ABC có tọa độ các đỉnh \(A(0;0;0);\,B\left( {\frac{a}{2};\frac{{a\sqrt 3 }}{2};0} \right);C(a;0;0);S(0;0;a)\). Tính góc giữa hai đường thẳng AB và SC.

Lời giải:

Ta có: \(\overrightarrow {AB} = \left( {\frac{a}{2};\frac{{a\sqrt 3 }}{2};0} \right)\); \(\overrightarrow {SC} = \left( {a;0; - a} \right).\)

\(\cos \left( {AB,SC} \right) = \frac{{\left| {\overrightarrow {AB} .\overrightarrow {SC} } \right|}}{{\left| {\overrightarrow {AB} } \right|.\left| {\overrightarrow {SC} } \right|}} = \frac{{\sqrt 2 }}{4} \Rightarrow \widehat {\left( {AB,SC} \right)} \approx {69^0}18'.\)

Ví dụ 5:

Cho hình lăng trụ ABC.A’B’C’ có tọa độ các điểm như sau:

\(A(0;0;0);\,B(a;0;0);\,C(0;a\sqrt 3 ,0);A'\left( {\frac{a}{2};\frac{{a\sqrt 3 }}{2};a\sqrt 3 } \right);B'\left( {\frac{{3a}}{2};\frac{{a\sqrt 3 }}{2};a\sqrt 3 } \right);C'\left( {\frac{a}{2};\frac{{3a\sqrt 3 }}{2};a\sqrt 3 } \right)\)

Gọi M là trung điểm của BC

a) Chứng minh: \(A'M \bot BC.\)

b) Tính góc giữa hai đường thẳng: AA’ và B’C’.

Lời giải:

Lăng trụ ABC.A'B'C'

a) Ta có: \(\overrightarrow {A'M} = \left( {0;0; - a\sqrt 3 } \right)\)

\(\overrightarrow {BC} = \left( { - a;a\sqrt 3 ;0} \right)\)

Ta có: \(\overrightarrow {AM} .\overrightarrow {BC} = 0.\)

Vậy AM vuông góc BC.

b) Ta có:

\(\begin{array}{l} \overrightarrow {AA'} = \left( {\frac{a}{2};\frac{{a\sqrt 3 }}{2};a\sqrt 3 } \right)\\ \overrightarrow {B'C'} = \left( {a; - a\sqrt 3 ;0} \right) \end{array}\)

\(\cos (AA',B'C') = \frac{{\left| {\overrightarrow {AA'} .\overrightarrow {B'C'} } \right|}}{{\left| {\overrightarrow {AA'} } \right|\left| {\overrightarrow {B'C'} } \right|}} = \frac{1}{4}\)

Vậy: \(\widehat {\left( {AA',B'C'} \right)} \approx {75^0}31'.\)

Ví dụ 6:

Trong không gian với hệ tọa độ Oxyz, cho điểm A(-1;-1;2) điểm B(-1;-1;0). Viết phương trình mặt cầu đường kính AB.

Lời giải:

Gọi I là trung điểm AB ta có: \(\left\{ \begin{array}{l} {x_I} = \frac{{{x_A} + {x_B}}}{2} = - 1\\ {y_I} = \frac{{{y_A} + {y_B}}}{2} = - 1\\ {z_I} = \frac{{{z_A} + {z_B}}}{2} = 1 \end{array} \right. \Rightarrow I( - 1; - 1;1)\)

Ta có: \(IA = IB = 1.\)

Mặt cầu đường kính AB, nhận điểm I làm tâm, có bán kính R=IA=1 nên có phương trình là:

\({(x + 1)^2} + {(y + 1)^2} + {(z - 1)^2} = 1.\)

Ví dụ 7:

Lập phương trình mặt cầu ngoại tiếp tứ diện ABCD với A(1; 1; 0), B(3; 1; 2), C(-1; 1; 2) và D(1;-1;2).

Lời giải:

Gọi phương trình mặt cầu là: \(\,{x^2} + {y^2} + {z^2} - 2{\rm{ax}}\,{\rm{ - }}\,{\rm{2by}}\,{\rm{ - }}\,{\rm{2cz}}\,{\rm{ + }}\,{\rm{d}}\,{\rm{ = }}\,{\rm{0}}\,\left( {{{\rm{a}}^{\rm{2}}} + {b^2} + {c^2} - d > 0} \right)\)

Mặt cầu đi qua 4 điểm A, B, C, D nên:

\(\Rightarrow \left\{ \begin{array}{l} -2a - 2b + d + 2 = 0\\ -6a - 2b - 4c + d + 14 = 0\\ 2a - 2b - 4c + d + 6 = 0\\ -2a + 2b - 4c + d + 6 = 0 \end{array} \right.\,\,\,\, \Rightarrow a = b = 1;\,c = 2;d = 2\)

Kết luận: Phương trình mặt cầu là \(x^2+y^2+z^2-2x-2y-4z+2=0.\)

4. Luyện tập Bài 1 Chương 3 Hình học 12

Ở lớp 10, các em đã được học các dạng toán sử dụng hệ tọa độ trong mặt phẳng. Trong chương trình lớp 12, các nội dung đã được học đó sẽ được kế thừa như một kiến thức nền tảng để mở rộng ra không gian ba chiều được gọi là phương pháp tọa độ trong không gian. Nội dung trong chương này xoay quanh các vấn đề về tọa độ điểm, vectơ, phương trình, góc, khoảng cách giữa các đối tượng trong không gian như đường thẳng, mặt phẳng, mặt cầu,...Sau đây, là nội dung bài học đâu tiên Hệ tọa độ trong không gian. Qua bài học này các em sẽ được tìm hiểu, ôn tập lại những khái niệm đã học, cũng như sẽ thấy được sự khác biệt của phương pháp tọa độ trong mặt phẳng và phương pháp tọa độ trong không gian. Bên cạnh đó các em sẽ biết được các dạng và cách viết phương trình mặt cầu.

4.1 Trắc nghiệm

Để củng cố bài học xin mời các em cùng làm Bài kiểm tra Trắc nghiệm Hình học 12 Chương 3 Bài 1 để kiểm tra xem mình đã nắm được nội dung bài học hay chưa.

  • Câu 1:

    Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(3;0;0), N(0;0;4). Tính độ dài đoạn thẳng MN.

    • A. MN = 5.
    • B. MN = 10.
    • C. MN = 1.
    • D. MN = 7.
  • Câu 2:

    Trong không gian Oxyz, cho ba vectơ \(\overrightarrow a = \left( {2; - 1;2} \right),\overrightarrow b = \left( {3;0;1} \right),\overrightarrow c = \left( { - 4;1; - 1} \right)\). Tìm tọa độ \(\overrightarrow m = 3\overrightarrow a - 2\overrightarrow b + \overrightarrow c.\)

    • A. \(\overrightarrow m = \left( { - 4;2;3} \right)\)
    • B. \(\overrightarrow m = \left( { - 4;-2;3} \right)\)
    • C. \(\overrightarrow m = \left( { - 4;-2;-3} \right)\)
    • D. \(\overrightarrow m = \left( { - 4;2;-3} \right)\)
  • Câu 3:

    Trong không gian với hệ tọa độ Oxyz, cho hai điểm \(A\left( { - 1;3;1} \right),B\left( {1;4;2} \right)\). Đường thẳng AB cắt mặt phẳng (Oxy) tại điểm I. Tìm \(k\) biết \(\overrightarrow {IB} = k.\overrightarrow {IA} .\)

    • A. \(k=-2\)
    • B. \(k=2\)
    • C. \(k=-\frac{1}{2}\)
    • D. \(k=\frac{1}{2}\)

Câu 4-10: Mời các em đăng nhập xem tiếp nội dung và thi thử Online để củng cố kiến thức và nắm vững hơn về bài học này nhé!

4.2 Bài tập SGK

Bên cạnh đó các em có thể xem phần hướng dẫn Giải bài tập Hình học 12 Chương 3 Bài 1 sẽ giúp các em nắm được các phương pháp giải bài tập từ SGK Hình học 12 Cơ bản và Nâng cao.

Bài tập 1 trang 68 SGK Hình học 12

Bài tập 2 trang 68 SGK Hình học 12

Bài tập 3 trang 68 SGK Hình học 12

Bài tập 4 trang 68 SGK Hình học 12

Bài tập 5 trang 68 SGK Hình học 12

Bài tập 6 trang 68 SGK Hình học 12

Bài tập 3.1 trang 102 SBT Hình học 12

Bài tập 3.2 trang 102 SBT Hình học 12

Bài tập 3.3 trang 102 SBT Hình học 12

Bài tập 3.4 trang 102 SBT Hình học 12

Bài tập 3.5 trang 102 SBT Hình học 12

Bài tập 3.6 trang 102 SBT Hình học 12

Bài tập 3.7 trang 102 SBT Hình học 12

Bài tập 3.8 trang 102 SBT Hình học 12

Bài tập 3.9 trang 103 SBT Hình học 12

Bài tập 3.10 trang 103 SBT Hình học 12

Bài tập 3.11 trang 103 SBT Hình học 12

Bài tập 3.12 trang 103 SBT Hình học 12

Bài tập 3.13 trang 103 SBT Hình học 12

Bài tập 3.14 trang 103 SBT Hình học 12

Bài tập 3.15 trang 103 SBT Hình học 12

Bài tập 3.16 trang 103 SBT Hình học 12

Bài tập 1 trang 81 SGK Hình học 12 NC

Bài tập 2 trang 81 SGK Hình học 12 NC

Bài tập 3 trang 81 SGK Hình học 12 NC

Bài tập 4 trang 81 SGK Hình học 12 NC

Bài tập 5 trang 81 SGK Hình học 12 NC

Bài tập 6 trang 81 SGK Hình học 12 NC

Bài tập 7 trang 81 SGK Hình học 12 NC

Bài tập 8 trang 81 SGK Hình học 12 NC

Bài tập 9 trang 81 SGK Hình học 12 NC

Bài tập 10 trang 81 SGK Hình học 12 NC

Bài tập 11 trang 81 SGK Hình học 12 NC

Bài tập 12 trang 82 SGK Hình học 12 NC

Bài tập 13 trang 82 SGK Hình học 12 NC

Bài tập 14 trang 82 SGK Hình học 12 NC

5. Hỏi đáp Bài 1 Chương 3 Toán 12

Nếu có thắc mắc cần giải đáp các em có thể để lại câu hỏi trong phần Hỏi đáp, cộng đồng Toán HỌC247 sẽ sớm trả lời cho các em.

-- Mod Toán Học 12 HỌC247

NONE

Bài học cùng chương

Bài 2: Phương trình mặt phẳng Hình học 12 Bài 2: Phương trình mặt phẳng Bài 3: Phương trình đường thẳng trong không gian Hình học 12 Bài 3: Phương trình đường thẳng trong không gian Ôn tập chương 3 Phương pháp toạ độ trong không gian Hình học 12 Ôn tập chương 3 Phương pháp toạ độ trong không gian Ôn tập cuối năm phần Hình học Toán 12 Ôn tập cuối năm phần Hình học ADSENSE ADMICRO Bộ đề thi nổi bật UREKA AANETWORK

XEM NHANH CHƯƠNG TRÌNH LỚP 12

Toán 12

Lý thuyết Toán 12

Giải bài tập SGK Toán 12

Giải BT sách nâng cao Toán 12

Trắc nghiệm Toán 12

Hình học 12 Chương 3

Ngữ văn 12

Lý thuyết Ngữ Văn 12

Soạn văn 12

Soạn văn 12 (ngắn gọn)

Văn mẫu 12

Soạn Ai đã đặt tên cho dòng sông

Tiếng Anh 12

Giải bài Tiếng Anh 12

Giải bài Tiếng Anh 12 (Mới)

Trắc nghiệm Tiếng Anh 12

Unit 9 Lớp 12 Deserts

Tiếng Anh 12 mới Unit 4

Vật lý 12

Lý thuyết Vật Lý 12

Giải bài tập SGK Vật Lý 12

Giải BT sách nâng cao Vật Lý 12

Trắc nghiệm Vật Lý 12

Ôn tập Vật lý 12 Chương 3

Hoá học 12

Lý thuyết Hóa 12

Giải bài tập SGK Hóa 12

Giải BT sách nâng cao Hóa 12

Trắc nghiệm Hóa 12

Ôn tập Hóa học 12 Chương 4

Sinh học 12

Lý thuyết Sinh 12

Giải bài tập SGK Sinh 12

Giải BT sách nâng cao Sinh 12

Trắc nghiệm Sinh 12

Ôn tập Sinh 12 Chương 1 - Tiến hóa

Lịch sử 12

Lý thuyết Lịch sử 12

Giải bài tập SGK Lịch sử 12

Trắc nghiệm Lịch sử 12

Lịch Sử 12 Chương 3 Lịch Sử VN

Địa lý 12

Lý thuyết Địa lý 12

Giải bài tập SGK Địa lý 12

Trắc nghiệm Địa lý 12

Địa Lý 12 VĐSD và BVTN

GDCD 12

Lý thuyết GDCD 12

Giải bài tập SGK GDCD 12

Trắc nghiệm GDCD 12

GDCD 12 Học kì 1

Công nghệ 12

Lý thuyết Công nghệ 12

Giải bài tập SGK Công nghệ 12

Trắc nghiệm Công nghệ 12

Công nghệ 12 Chương 3

Tin học 12

Lý thuyết Tin học 12

Giải bài tập SGK Tin học 12

Trắc nghiệm Tin học 12

Tin học 12 Chương 2

Cộng đồng

Hỏi đáp lớp 12

Tư liệu lớp 12

Xem nhiều nhất tuần

Video: Vợ nhặt của Kim Lân

Đề cương HK1 lớp 12

Video ôn thi THPT QG môn Toán

Video ôn thi THPT QG môn Sinh

Video ôn thi THPT QG môn Vật lý

Video ôn thi THPT QG môn Văn

Video ôn thi THPT QG môn Hóa

Video ôn thi THPT QG Tiếng Anh

Khái quát văn học Việt Nam từ đầu CMT8 1945 đến thế kỉ XX

Người lái đò sông Đà

Đất Nước- Nguyễn Khoa Điềm

Quá trình văn học và phong cách văn học

Đàn ghi ta của Lor-ca

Tây Tiến

Ai đã đặt tên cho dòng sông

YOMEDIA YOMEDIA ×

Thông báo

Bạn vui lòng đăng nhập trước khi sử dụng chức năng này.

Bỏ qua Đăng nhập ×

Thông báo

Bạn vui lòng đăng nhập trước khi sử dụng chức năng này.

Đồng ý ATNETWORK ON zunia.vn QC Bỏ qua >>

Từ khóa » Toạ độ Trong Không Gian