Hình Học 12 Bài 3: Phương Trình đường Thẳng Trong Không Gian
Có thể bạn quan tâm
Ví dụ 1:
Viết phương trình tham số của đường thẳng d trong các trường hợp sau:
a) d đi qua A(1; 2;-3) và B(-2; 2;0).
b) d đi qua A(-2;4;3) và vuông góc với mặt phẳng \((\alpha):\) 2x-3y–6z+19=0.
c) d đi qua điểm A(2;-5;3) và song song với đường thẳng \(d':\) \(\left\{ \begin{array}{l} x = 2 + t\\ y = 3 + 2t\\ z = 5 - 3t \end{array} \right.\).
d) d đi qua điểm M(3;1;5) và song song với hai mặt phẳng (P):2x+3y-2z+1=0 và (Q): x–3y+z-2=0.
Lời giải:
a) Ta có: \(\overrightarrow {AB} = \left( { - 1;0;1} \right).\)
Do d đi qua A và B nên VTCP của d là \(\overrightarrow u = \frac{1}{3}\overrightarrow {AB} = \left( { - 1;0;1} \right)\).
Mặt khác d đi qua A(1; 2;-3).
Suy ra phương trình tham số của d là \(\left\{ \begin{array}{l} x = 1 - t\\ y = 2\\ z = - 3 + t \end{array} \right.\)
b) VTPT của \((\alpha)\)là \(\vec n = (2; - 3; - 6).\)
Do \(d \bot (\alpha )\) nên d nhận \(\vec u =\vec n=(2;-3;-6)\) là VTCP.
Mặt khác d đi qua A(-2;4;3).
Suy ra phương trình tham số của d là \(\left\{ \begin{array}{l} x = - 2 + 2t\\ y = 4 - 3t\\ z = 3 - 6t \end{array} \right.\)
c) VTCP của d' là \(\overrightarrow {u'} = (1;2; - 3).\)
Do d// d’ nên VTCP của d \(\overrightarrow u = \overrightarrow {u'} = (1;2; - 3).\)
Mặt khác d đi qua điểm A(2;-5;3).
Suy ra phương trình tham số của d là \(\left\{ \begin{array}{l} x = 2 + t\\ y = - 5 + 2t\\ z = 3 - 3t \end{array} \right.\)
d) Ta có: \(\overrightarrow {{n_{(P)}}} = (2;3; - 2)\) và \(\overrightarrow {{n_{(Q)}}} = (1; - 3;1)\) lần lượt là VTPT của mặt phẳng (P) và mặt phẳng (Q).
Do: \(\left\{ \begin{array}{l} d//\left( P \right)\\ d//(Q) \end{array} \right.\) nên d có VTCP là: \(\overrightarrow u = \left[ {\overrightarrow {{n_P}} ;\overrightarrow {{n_Q}} } \right] = ( - 3; - 4; - 9).\)
Mặt khác: d đi qua điểm M(3;1;5)
Suy ra phương trình tham số của d là: \(\left\{ \begin{array}{l} x = 3 - 3t\\ y = 1 - 4t\\ z = 5 - 9t \end{array} \right.\)
Ví dụ 2:
Xác đinh trí tương đối của các cặp đường thẳng d và d’ cho bởi các phương trình sau:
a) \({\rm{d}}:\left\{ \begin{array}{l} x = - 3 + 2t\\ y = - 2 + 3t\\ z = 6 + 4t \end{array} \right.\) và \(d':\left\{ \begin{array}{l} x = 5 + t'\\ y = - 1 - 4t'\\ z = 20 + t' \end{array} \right.\).
b) \(d:\left\{ \begin{array}{l} x = 1 + t\\ y = 2 + t\\ z = 3 - t \end{array} \right.\) và \(d':\left\{ \begin{array}{l} x = 1 + 2t'\\ y = - 1 + 2t'\\ z = 2 - 2t' \end{array} \right.\).
Lời giải:
a) d qua A(-3;-2;6) có VTCP \(\overrightarrow u = \left( {2;3;4} \right).\)
d’ qua B(5;-1;20) có VTCP \(\overrightarrow {u'} = \left( {1; - 4;1} \right)\).
\(\overrightarrow {AB} = \left( {8;1;14} \right)\)
\(\left[ {\overrightarrow u ,\overrightarrow {u'} } \right] = \left( {\left| {\begin{array}{*{20}{c}} 3&4\\ { - 4}&1 \end{array}} \right|;\left| {\begin{array}{*{20}{c}} 4&2\\ 1&1 \end{array}} \right|;\left| {\begin{array}{*{20}{c}} 2&3\\ 1&{ - 4} \end{array}} \right|} \right) = \left( {19;2; - 11} \right).\)
Ta có: \(\left\{ \begin{array}{l} \left[ {\overrightarrow u ,\overrightarrow {u'} } \right].\overrightarrow {AB} = 19.8 + 2.1 - 11.14 = 152 + 2 - 154 = 0\\ \left[ {\overrightarrow u ,\overrightarrow {u'} } \right] = \left( {19;2; - 11} \right) \ne \overrightarrow 0 \end{array} \right.\)
Suy ra d và d' cắt nhau.
b) d qua A(1;2;3) có VTCP \(\overrightarrow u = \left( {1;1; - 1} \right).\)
d’ qua B(1;-1;2) có VTCP \(\overrightarrow {u'} = \left( {2; 2;-2} \right).\)
\(\overrightarrow {AB} = \left( {0;-3;-1} \right)\)
\(\left[ {\overrightarrow u ,\overrightarrow {u'} } \right] = \left( {\left| {\begin{array}{*{20}{c}} 1&{ - 1}\\ 2&{ - 2} \end{array}} \right|;\left| {\begin{array}{*{20}{c}} { - 1}&1\\ { - 2}&2 \end{array}} \right|;\left| {\begin{array}{*{20}{c}} 1&1\\ 2&2 \end{array}} \right|} \right) = \left( {0;0;0} \right)\)
Ta có: \(\left\{ \begin{array}{l} \overrightarrow {u'} = 2\overrightarrow u \\ \overrightarrow {AB} = \left( {0; - 3; - 1} \right) \ne \overrightarrow 0 \end{array} \right.\)
Suy ra d và d' song song với nhau.
Ví dụ 3:
Tìm a để hai đường thẳng sau đây cắt nhau \(d:\left\{ \begin{array}{l} x = 1 + at\\ y = t\\ z = - 1 - 2t \end{array} \right.;d':\left\{ \begin{array}{l} x = 1 - t'\\ y = 2 + 2t'\\ z = 3 - t \end{array} \right.\).
Lời giải:
d qua A(1;0;-1) có VTCP \(\overrightarrow u = \left( {a;1;2} \right).\)
d’ qua B(1;2;3) có VTCP \(\overrightarrow u = \left( { - 1;2; - 1} \right).\)
\(\overrightarrow {AB} = \left( {0;2;4} \right)\)
\(\left[ {\overrightarrow u ,\overrightarrow {u'} } \right] = \left( {\left| {\begin{array}{*{20}{c}} 1&2\\ 2&{ - 1} \end{array}} \right|;\left| {\begin{array}{*{20}{c}} 2&a\\ { - 1}&{ - 1} \end{array}} \right|;\left| {\begin{array}{*{20}{c}} a&1\\ { - 1}&2 \end{array}} \right|} \right) = \left( { - 5;a - 2;2{\rm{a}} + 1} \right)\).
Nếu d cắt d' khi:
\(\begin{array}{l} \left\{ \begin{array}{l} \left[ {\overrightarrow u ,\overrightarrow {u'} } \right] \ne \overrightarrow 0 \\ \left[ {\overrightarrow u ,\overrightarrow {u'} } \right].\overrightarrow {AB} = 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} a - 2 \ne 0\\ 2{\rm{a}} - 1 \ne 0\\ 2(a - 2) + 4(2{\rm{a + }}1) = 0 \end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l} a \ne 2\\ a \ne \frac{1}{2}\\ a = 0 \end{array} \right. \Rightarrow a = 0 \end{array}\)
Vậy a=0 là giá trị cần tìm.
Ví dụ 4:
Tính các khoảng cách sau:
a) Khoảng cách từ điểm A(1;0;1) đến đường thẳng \(\Delta :\frac{{x - 1}}{2} = \frac{y}{2} = \frac{z}{1}.\)
b) Khoảng cách giữa hai đường thẳng \(\Delta :\left\{ \begin{array}{l} x = 1 + t\\ y = - 1 - t\\ z = 1 \end{array} \right.\) và \(\Delta ':\left\{ \begin{array}{l} x = 2 - 3t'\\ y = 2 + 3t'\\ z = 3t' \end{array} \right.\quad \left( {t,t' \in R} \right)\).
Lời giải:
a) Đường thẳng \(\Delta\) đi qua điểm B(1;0;0) và có vectơ chỉ phương \(\overrightarrow u = \left( {2;2;1} \right)\).
\(\begin{array}{l} \overrightarrow {AB} = \left( {0;0; - 1} \right)\\ \left[ {\overrightarrow {AB} ,\vec u} \right] = \left( {\left| {\begin{array}{*{20}{c}} 0&{ - 1}\\ 2&1 \end{array}} \right|;\left| {\begin{array}{*{20}{c}} { - 1}&0\\ 1&2 \end{array}} \right|;\left| {\begin{array}{*{20}{c}} 0&0\\ 2&2 \end{array}} \right|} \right) = \left( {2; - 2;0} \right). \end{array}\)
Vậy \(d\left( {A,\Delta } \right) = \frac{{\sqrt {4 + 4} }}{{\sqrt {4 + 4 + 1} }} = \frac{{2\sqrt 2 }}{3}.\)
b) Đường thẳng \(\Delta\) qua A(1;-1;1) và có VTCP \(\overrightarrow u = \left( {1; - 1;0} \right).\)
Đường thẳng \(\Delta'\) qua B(2;2;0) và VTCP \(\overrightarrow {u'} = \left( { - 3;3;3} \right).\)
\(\begin{array}{l} \overrightarrow {AB} = \left( {1;3; - 1} \right)\\ \left[ {\vec u,\vec u'} \right] = \left( { - 3; - 3;0} \right)\\ \Rightarrow \left[ {\vec u,\vec u'} \right].\overrightarrow {AB} = - 12. \end{array}\)
Vậy: \(d\left( {\Delta ,\Delta '} \right) = \frac{{\left| {\left[ {\overrightarrow u ,\overrightarrow {u'} } \right].\overrightarrow {AB} } \right|}}{{\left| {\left[ {\overrightarrow u ,\overrightarrow {u'} } \right]} \right|}} = \frac{{\left| { - 12} \right|}}{{\sqrt {9 + 9 + 0} }} = \frac{{12}}{{3\sqrt 2 }} = 2\sqrt 2.\)
Ví dụ 5:
a) Tính góc tạo bởi đường thẳng (d): \(\left\{ \begin{array}{l} x = 1 + 2t\\ y = 2 + t\\ z = 5 + 4t \end{array} \right.\) và \((d'):\frac{{x - 2}}{{ - 1}} + \frac{{y - 4}}{3} + \frac{{z + 3}}{2} = 0.\)
b) Tìm m để đường thẳng \((d):\left\{ \begin{array}{l} x = 2t\\ y = 1 - 2t\\ z = 1 - t \end{array} \right.\) và \((d'):\left\{ \begin{array}{l} x = 1 + 2t\\ y = 2 + (m - 2)t\\ z = t \end{array} \right.\) tạo với nhau một góc 600.
Lời giải:
a) VTCP của (d) là: \(\overrightarrow {{u_d}} = (2;1;4).\)
VTCP của (d’) là: \(\overrightarrow {{u_{d'}}} = \left( { - 1;3;2} \right).\)
Gọi \(\varphi\) là góc tạo bởi hai đường thẳng (d) và (d’) ta có:
\(\begin{array}{l} \cos \varphi = \frac{{\left| {\overrightarrow {{u_d}} .\overrightarrow {{u_{d'}}} } \right|}}{{\left| {\overrightarrow {{u_d}} } \right|\left| {\overrightarrow {{u_{d'}}} } \right|}} = \frac{{\left| {2.( - 1) + 3.1 + 4.2} \right|}}{{\sqrt {{2^2} + {1^2} + {4^2}} \sqrt {{{( - 1)}^2} + {3^2} + {2^2}} }} = \frac{9}{{\sqrt {294} }}\\ \Rightarrow \varphi \approx {88^0}15' \end{array}\)
b) \(\overrightarrow {{u_d}} = \left( {2; - 2; - 1} \right)\)
\(\overrightarrow {{u_{d'}}} = \left( {m;m - 2;1} \right)\)
(d) và (d’) tạo với nhau một góc 600 nên:
\(\begin{array}{l} \left| {\cos \left( {\overrightarrow {{n_P}} ,\overrightarrow {{n_Q}} } \right)} \right| = \frac{1}{2} \Leftrightarrow \frac{1}{{\sqrt {2{m^2} - 4m + 5} }} = \frac{1}{2}\\ \Leftrightarrow 2{m^2} - 4m + 1 = 0 \Leftrightarrow \left[ \begin{array}{l} m = 2 - \sqrt 2 \\ m = 2 + \sqrt 2 \end{array} \right. \end{array}\)
Vậy \(m=2-\sqrt2\) và \(m=2+\sqrt2\) là các giá trị cần tìm.
Ví dụ 6:
Tìm m để đường thẳng: \(d:\left\{ \begin{array}{l} x = 1 + mt\\ y = (m - 2)t\\ z = 1 + t \end{array} \right.\) và (P): \(2x - 2y - z + 1 = 0\) tạo thành góc 300.
Lời giải:
d có VTCP: \(\overrightarrow u = (m,m - 2,1).\)
(P) có VTPT: \(\overrightarrow n = (2; - 2; - 1).\)
d và (P) tạo với nhau một góc 300 nên:
\(\begin{array}{l} \sin {30^0} = \left| {\cos \left( {\overrightarrow u ,\vec n} \right)} \right| = \frac{1}{2}\,\, \Leftrightarrow \frac{1}{{\sqrt {2{m^2} - 4m + 5} }} = \frac{1}{2}\\ \Leftrightarrow 2{m^2} - 4m + 1 = 0 \Leftrightarrow \left[ \begin{array}{l} m = \frac{{2 + \sqrt 2 }}{2}\\ m = \frac{{2 - \sqrt 2 }}{2} \end{array} \right.. \end{array}\)
Vậy \(m = \frac{{2 + \sqrt 2 }}{2}\) và \(m = \frac{{2 - \sqrt 2 }}{2}\) là các giá trị cần tìm.
Từ khóa » Cách Viết Pt đường Thẳng Trong Không Gian
-
Các Dạng Toán Về Phương Trình đường Thẳng Trong Không Gian Oxyz ...
-
Tổng Hợp Công Thức Phương Trình đường Thẳng Trong Không Gian ...
-
Các Dạng Toán Về Phương Trình đường Thẳng Trong Không Gian
-
Phương Trình Đường Thẳng Trong Không Gian: Lý Thuyết Và Bài Tập
-
Cách Viết Phương Trình đường Thẳng Trong Không Gian Oxyz Từ AZ đủ ...
-
Phương Trình đường Thẳng Trong Không Gian Oxyz - DINHNGHIA.VN
-
Vecto Chỉ Phương Của đường Thẳng Trong Không Gian
-
Viết Phương Trình đường Thẳng Trong Không Gian
-
Phương Trình đường Thẳng Trong Không Gian - Giải Bài Tập SGK ...
-
Phương Trình đường Thẳng Trong Không Gian - Toán Thầy Định
-
Cách Viết Phương Trình đường Thẳng Trong Không Gian Oxyz - Bài Tập ...
-
Các Dạng Bài Tập Viết Phương Trình đường Thẳng Trong Không Gian
-
Các Dạng Bài Tập Phương Trình đường Thẳng Trong Không Gian Chọn ...
-
Phương Trình Của đường Thẳng - Toán Học Lớp 12 - Baitap123