Home Page Of Cho-Ho Chu - Queen Mary University Of London
Monographs                   (2012)                                               (2020)                                        (2008)            (2002) Journal Publications
(since 2008)
- A note on Bloch functions, (Special Issue) Studia Universitatis Babes-Bolyai Mathematica, 2021 (to appear)
- Siegel domains over Finsler symmetric cones, J. reine angew. Math. (Crelle) 778 (2021) 145-169.
- (with Kang-Tae Kim, Sejun Kim) Correction to: Infinite dimensional holomorphic homogeneous regular domains, J. Geometric Analysis 31 (2021) 4356-4357.
- (with Kang-Tae Kim, Sejun Kim) Infinite dimensional holomorphic homogeneous regular domains, J. Geometric Analysis 30 (2020) 223-247. ArXiv:1808.03416v3
- (with H. Hamada, T. Honda, G. Kohr) Bloch space of a bounded symmetric domain and composition operators, Complex Anal. Oper. Theory 13 (2019) 479-492.
- (with Lina Oliveira) Tits-Kantor-Koecher Lie algebras of JB*-triples, J. Algebra 512 (2018) 465-492.
- (with Xin Li) Amenability, Reiter's condition and Liouville property , J. Funct. Analysis 274 (2018) 3291-3324.
- Jordan structures in bounded symmetric domains, in Geometric function theory in higher dimension (Springer INdAM series 26, Springer, 2017) 43-61.
- Infinite dimensional Jordan algebras and symmetric cones, J. Algebra 491 (2017) 357-371.
- (with M. Rigby) Horoballs and iteration of holomorphic maps on bounded symmetric domains, Advances in Math. 311 (2017) 338-377.
- (with H. Hamada, T. Honda, G. Kohr) Bloch functions on bounded symmetric domains, J. Funct. Analysis 272 (2017) 2412-2441.
- (with B. Russo) Cohomology of Jordan triples via Lie algebras, Contemp. Math., Amer. Math. Soc. 672 (2016) 127-157.
- (with H. Hamada, T. Honda, G. Kohr) Distortion of locally biholomorphic Bloch mappings on bounded symmetric domains, J. Math. Anal. Appl. 441 (2016) 830-843.
- (with L. Li) Separably injective C*-algebras, Arch. Math. 106 (2016) 553-559.
- Iteration of holomorphic maps on Lie balls, Advances in Math. 264 (2014) 114-154.
- (with M. Rigby) Iteration of self-maps on a product of Hilbert balls, J. Math. Anal. Appl. 411 (2014) 773-786.
- (with M. Victoria Velasco) Automatic continuity of homomorphisms in non-associative Banach algebras, Cand. J. Math. 65 (2013) 989-1004.
- Jordan structures in Banach spaces, Operators & Matrices 6 (2012) 347-356.
- (with M. Amini) Harmonic functions on hypergroups, J. Funct. Analysis 261 (2011) 1835-1864.
- (with C. Chen) Hypercyclicity of weighted translations on groups, Proc. Amer. Math. Soc. 139 (2011) 2839-2846.
- (with A.T-M. Lau) Harmonic functions on topological groups and symmetric spaces, Math. Z. 268 (2011) 649-673.
- (with H. Hamada, T. Honda, G. Kohr) Distorsion theorems for convex mappings on homogeneous balls, J. Math. Anal. Appl. 369 (2010) 437-442.
- (with O.F. Bandtlow) Eigenvalue decay of operators on harmonic function spaces, Bull. London Math. Soc. 41 (2009) 903-915.
- (with C. Chen) Hypercyclicity of weighted convolution operators on homogeneous spaces, Proc. Amer. Math. Soc. 137 (2009) 2709-2718.
- (with H. Hamada, T. Honda, G. Kohr) Starlike and convex rational mappings on infinite dimensional domains, Mathematische Nachrichten 282 (2009) 160-168.
- Jordan triples and Riemannian symmetric spaces, Advances in Math. 219 (2008) 2029-2057.
- (with C. Chen) Spectrum of a homogeneous graph, J. Math. Anal. Appl. 347 (2008) 573-582.
- (with Z. Qian) Dirichlet forms and Markov semigroups on non-associative vector bundles, Studies in Adv. Math. Amer. Math. Soc. 42 (2008) 433-445.
Từ khóa » Ch Hco
-
Write The IUPAC Name Of Ph - CH = CH - CHO . - Toppr
-
What Is The IUPAC Name Of CH3-CH=CH-CHO? - Quora
-
(a) Give IUPAC Name Of CH3 – CH = CH – CHO.(b) How Can You ...
-
Write The IUPAC Name Of `PH-CH=CH-CHO`. - YouTube
-
Write IUPAC Name Of CH3CH=CH-CHO - Doubtnut
-
Prof CHO Chi Hin - School Of Biomedical Sciences
-
Chu Cho Industries
-
Aldehyde | Definition, Structure, Examples, & Facts | Britannica
-
Formation Of CH3CHO In The Combination Of CH3 With CHO
-
IUPAC Name Of The Compound CH2=CH−CHO Is? - Vedantu
-
Home
Copyright © 2022 | Thiết Kế Truyền Hình Cáp Sông Thu