If Y = Xn−1 Log X Then X2 Y2 + (3 − 2n) Xy1 Is Equal To (A) −(N
Advertisements
Advertisements
Question
If y = xn−1 log x then x2 y2 + (3 − 2n) xy1 is equal to
Options
−(n − 1)2 y
(n − 1)2y
−n2y
n2y
Advertisements
SolutionShow Solution
(a) −(n − 1)2 y
Here,
\[y = x^{n - 1} \log x\]
\[ \Rightarrow y_1 = \left( n - 1 \right) x^{n - 2} \log x + \frac{x^{n - 1}}{x}\]
\[ \Rightarrow y_1 = \frac{\left( n - 1 \right) x^{n - 1} \log x + x^{n - 1}}{x}\]
\[ \Rightarrow x y_1 = \left( n - 1 \right)y + x^{n - 1} \]
\[ \Rightarrow x y_2 + y_1 = \left( n - 1 \right) y_1 + \left( n - 1 \right) x^{n - 2} \]
\[ \Rightarrow x y_2 + y_1 = \left( n - 1 \right) y_1 + \frac{\left( n - 1 \right) x^{n - 1}}{x}\]
\[ \Rightarrow x^2 y_2 + x y_1 = x\left( n - 1 \right) y_1 + \left( n - 1 \right) x^{n - 1} \]
\[ \Rightarrow x^2 y_2 + x y_1 = x\left( n - 1 \right) y_1 + \left( n - 1 \right)\left\{ x y_1 - \left( n - 1 \right)y \right\}\]
\[ \Rightarrow x^2 y_2 + x y_1 = x\left( n - 1 \right) y_1 + \left( n - 1 \right)x y_1 - \left( n - 1 \right)^2 y\]
\[ \Rightarrow x^2 y_2 + x y_1 = 2x\left( n - 1 \right) y_1 - \left( n - 1 \right)^2 y\]
\[ \Rightarrow x^2 y_2 + x y_1 - 2x\left( n - 1 \right) y_1 = - \left( n - 1 \right)^2 y\]
\[ \Rightarrow x^2 y_2 + x y_1 \left( 1 - 2n + 2 \right) = - \left( n - 1 \right)^2 y\]
\[ \Rightarrow x^2 y_2 + \left( 3 - 2n \right)x y_1 = - \left( n - 1 \right)^2 y\]
shaalaa.comSimple Problems on Applications of Derivatives Report Error Is there an error in this question or solution?Q 24Q 23Q 25Chapter 12: Higher Order Derivatives - Exercise 12.3 [Page 24]APPEARS IN
RD Sharma Mathematics [English] Class 12Chapter 12 Higher Order DerivativesExercise 12.3 | Q 24 | Page 24Video TutorialsVIEW ALL [1]
- view Video Tutorials For All Subjects
- Simple Problems on Applications of Derivativesvideo tutorial04:39:41
RELATED QUESTIONS
Differentiate etan x ?
Differentiate \[\sin \left( \frac{1 + x^2}{1 - x^2} \right)\] ?
Differentiate \[e^{\sin^{- 1} 2x}\] ?
If \[y = \log \left\{ \sqrt{x - 1} - \sqrt{x + 1} \right\}\] ,show that \[\frac{dy}{dx} = \frac{- 1}{2\sqrt{x^2 - 1}}\] ?
If xy = 4, prove that \[x\left( \frac{dy}{dx} + y^2 \right) = 3 y\] ?
Differentiate \[\tan^{- 1} \left( \frac{a + bx}{b - ax} \right)\] ?
If \[y = \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) + \sec^{- 1} \left( \frac{1 + x^2}{1 - x^2} \right), x > 0\] ,prove that \[\frac{dy}{dx} = \frac{4}{1 + x^2} \] ?
Find \[\frac{dy}{dx}\] in the following case \[\sin xy + \cos \left( x + y \right) = 1\] ?
Differentiate \[\left( \log x \right)^{ \log x }\] ?
Differentiate \[{10}^\left( {10}^x \right)\] ?
Find \[\frac{dy}{dx}\] \[y = x^{\cos x} + \left( \sin x \right)^{\tan x}\] ?
Find \[\frac{dy}{dx}\] \[y = x^{\log x }+ \left( \log x \right)^x\] ?
If \[e^y = y^x ,\] prove that\[\frac{dy}{dx} = \frac{\left( \log y \right)^2}{\log y - 1}\] ?
If \[y = x \sin y\] , prove that \[\frac{dy}{dx} = \frac{y}{x \left( 1 - x \cos y \right)}\] ?
If \[y = \sqrt{\cos x + \sqrt{\cos x + \sqrt{\cos x + . . . to \infty}}}\] , prove that \[\frac{dy}{dx} = \frac{\sin x}{1 - 2 y}\] ?
If \[y = \left( \tan x \right)^{\left( \tan x \right)^{\left( \tan x \right)^{. . . \infty}}}\], prove that \[\frac{dy}{dx} = 2\ at\ x = \frac{\pi}{4}\] ?
Find \[\frac{dy}{dx}\], when \[x = a t^2 \text{ and } y = 2\ at \] ?
If \[\frac{dy}{dx}\] when \[x = a \cos \theta \text{ and } y = b \sin \theta\] ?
Find \[\frac{dy}{dx}\] , when \[x = \frac{3 at}{1 + t^2}, \text{ and } y = \frac{3 a t^2}{1 + t^2}\] ?
Differentiate \[\tan^{- 1} \left( \frac{1 + ax}{1 - ax} \right)\] with respect to \[\sqrt{1 + a^2 x^2}\] ?
Differentiate \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right)\] with respect to \[\tan^{- 1} \left( \frac{x}{\sqrt{1 - x^2}} \right), \text { if }- \frac{1}{\sqrt{2}} < x < \frac{1}{\sqrt{2}}\] ?
Differentiate \[\cos^{- 1} \left( 4 x^3 - 3x \right)\] with respect to \[\tan^{- 1} \left( \frac{\sqrt{1 - x^2}}{x} \right), \text{ if }\frac{1}{2} < x < 1\] ?
Let g (x) be the inverse of an invertible function f (x) which is derivable at x = 3. If f (3) = 9 and `f' (3) = 9`, write the value of `g' (9)`.
If f (x) is an even function, then write whether `f' (x)` is even or odd ?
The derivative of \[\cos^{- 1} \left( 2 x^2 - 1 \right)\] with respect to \[\cos^{- 1} x\] is ___________ .
If \[f\left( x \right) = \sqrt{x^2 + 6x + 9}, \text { then } f'\left( x \right)\] is equal to ______________ .
If \[f\left( x \right) = \left| x^2 - 9x + 20 \right|\] then `f' (x)` is equal to ____________ .
If \[f\left( x \right) = \left( \frac{x^l}{x^m} \right)^{l + m} \left( \frac{x^m}{x^n} \right)^{m + n} \left( \frac{x^n}{x^l} \right)^{n + 1}\] the f' (x) is equal to _____________ .
If y = x3 log x, prove that \[\frac{d^4 y}{d x^4} = \frac{6}{x}\] ?
If \[y = \left[ \log \left( x + \sqrt{x^2 + 1} \right) \right]^2\] show that \[\left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + x\frac{dy}{dx} = 2\] ?
If x = 2at, y = at2, where a is a constant, then find \[\frac{d^2 y}{d x^2} \text { at }x = \frac{1}{2}\] ?
If x = f(t) and y = g(t), then write the value of \[\frac{d^2 y}{d x^2}\] ?
If y = a sin mx + b cos mx, then \[\frac{d^2 y}{d x^2}\] is equal to
If \[y = \tan^{- 1} \left\{ \frac{\log_e \left( e/ x^2 \right)}{\log_e \left( e x^2 \right)} \right\} + \tan^{- 1} \left( \frac{3 + 2 \log_e x}{1 - 6 \log_e x} \right)\], then \[\frac{d^2 y}{d x^2} =\]
If \[\frac{d}{dx}\left[ x^n - a_1 x^{n - 1} + a_2 x^{n - 2} + . . . + \left( - 1 \right)^n a_n \right] e^x = x^n e^x\] then the value of ar, 0 < r ≤ n, is equal to
If xy = e(x – y), then show that `dy/dx = (y(x-1))/(x(y+1)) .`
If logy = tan–1 x, then show that `(1+x^2) (d^2y)/(dx^2) + (2x - 1) dy/dx = 0 .`
\[\text { If } y = \left( x + \sqrt{1 + x^2} \right)^n , \text { then show that }\]
\[\left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + x\frac{dy}{dx} = n^2 y .\]
If `x=a (cos t +t sint )and y= a(sint-cos t )` Prove that `Sec^3 t/(at),0<t< pi/2`
If p, q, r, s are real number and pr = 2(q + s) then for the equation x2 + px + q = 0 and x2 + rx + s = 0 which of the following statement is true?
Question Bank with Solutions- Maharashtra State Board Question Bank with Solutions (Official)
- Balbharati Solutions (Maharashtra)
- Samacheer Kalvi Solutions (Tamil Nadu)
- NCERT Solutions
- RD Sharma Solutions
- RD Sharma Class 10 Solutions
- RD Sharma Class 9 Solutions
- Lakhmir Singh Solutions
- TS Grewal Solutions
- ICSE Class 10 Solutions
- Selina ICSE Concise Solutions
- Frank ICSE Solutions
- ML Aggarwal Solutions
- NCERT Solutions for Class 12 Maths
- NCERT Solutions for Class 12 Physics
- NCERT Solutions for Class 12 Chemistry
- NCERT Solutions for Class 12 Biology
- NCERT Solutions for Class 11 Maths
- NCERT Solutions for Class 11 Physics
- NCERT Solutions for Class 11 Chemistry
- NCERT Solutions for Class 11 Biology
- NCERT Solutions for Class 10 Maths
- NCERT Solutions for Class 10 Science
- NCERT Solutions for Class 9 Maths
- NCERT Solutions for Class 9 Science
- CBSE Study Material
- Maharashtra State Board Study Material
- Tamil Nadu State Board Study Material
- CISCE ICSE / ISC Study Material
- Mumbai University Engineering Study Material
- CBSE Previous Year Question Papers With Solutions for Class 12 Arts
- CBSE Previous Year Question Papers With Solutions for Class 12 Commerce
- CBSE Previous Year Question Papers With Solutions for Class 12 Science
- CBSE Previous Year Question Papers With Solutions for Class 10
- Maharashtra State Board Previous Year Question Papers With Solutions for Class 12 Arts
- Maharashtra State Board Previous Year Question Papers With Solutions for Class 12 Commerce
- Maharashtra State Board Previous Year Question Papers With Solutions for Class 12 Science
- Maharashtra State Board Previous Year Question Papers With Solutions for Class 10
- CISCE ICSE / ISC Board Previous Year Question Papers With Solutions for Class 12 Arts
- CISCE ICSE / ISC Board Previous Year Question Papers With Solutions for Class 12 Commerce
- CISCE ICSE / ISC Board Previous Year Question Papers With Solutions for Class 12 Science
- CISCE ICSE / ISC Board Previous Year Question Papers With Solutions for Class 10
- Entrance Exams
- Video Tutorials
- Question Papers
- Question Bank Solutions
- Question Search (beta)
- Privacy Policy
- Terms and Conditions
- Contact Us
- About Us
- Shaalaa App
- Ad-free Subscriptions
Select a course
CANCELEnglishहिंदीमराठीuserLoginCreate free accountemail:password:Log in Forgot password?CourseCommerce (English Medium) Class 12 CBSEPUC Science 2nd PUC Class 12 Karnataka Board PUCArts (English Medium) Class 12 CBSEScience (English Medium) Class 12 CBSEchange- Home
- Class 1 - 4
- Class 5 - 8
- Class 9 - 10
- Class 11 - 12
- Entrance Exams
- Search by Text or Image
- Textbook Solutions
- Study Material
- Remove All Ads
- Change mode
- Log out
Từ khóa » X^(n-1)log X
-
Nth Derivative Of X^n 1 Log(x)! Leibnitz Theorem ! B Sc, Engg. Math
-
What Is The Nth Derivative Of X^(n-1) Logx Using The Leibintz Theorem?
-
[Solved] If Y = Xn-1 Ln X, Then The Nth Order Derivative Of Y Wi
-
If $y=x^{n-1}\ln (x)$, Then Prove That $xy_{n}=(n-1)!
-
Log Rules | Logarithm Rules
-
Q24 If Y = Xn–1 Log X, Then X2 Y2 + (3 – 2n) Xy1 Is Equal To Write The ...
-
If Y = (x / N)^nx (1 + Log (x / N)), Then Value Of Y' (n) Is Given By - Byju's
-
If Y = X ^(n-1) Log X, Then Xy (1)= - Doubtnut
-
If Y = X^n–1 Log X, Then X^2 Y2 + (3 – 2n) Xy1 Is Equal To A. – (n
-
The Number Of Distinct Subsums Of $\Sigma^N_1 L/i$ - JSTOR
-
If Y = X^ (logx)^ Log(logx) , Then Dy/dx Is - Toppr
-
[PDF] What Is A Logarithm? Log Base 10