If Y = Xn−1 Log X Then X2 Y2 + (3 − 2n) Xy1 Is Equal To (A) −(N

0CBSECommerce (English Medium) Class 12Question PapersQuestion Papers2481Textbook Solutions20216MCQ Online Mock Tests42Important Solutions15833Concept Notes & Videos242Time Tables21SyllabusIf Y = Xn−1 Log X Then X2 Y2 + (3 − 2n) Xy1 is Equal to (A) −(N − 1)2 Y (B) (N − 1)2y - Mathematics
Advertisements
Advertisements

Question

If y = xn−1 log x then x2 y2 + (3 − 2n) xy1 is equal to

Options

  • −(n − 1)2 y

  • (n − 1)2y

  • −n2y

  • n2y

MCQ

SolutionShow Solution

(a) −(n − 1)2 y

Here,

\[y = x^{n - 1} \log x\]

\[ \Rightarrow y_1 = \left( n - 1 \right) x^{n - 2} \log x + \frac{x^{n - 1}}{x}\]

\[ \Rightarrow y_1 = \frac{\left( n - 1 \right) x^{n - 1} \log x + x^{n - 1}}{x}\]

\[ \Rightarrow x y_1 = \left( n - 1 \right)y + x^{n - 1} \]

\[ \Rightarrow x y_2 + y_1 = \left( n - 1 \right) y_1 + \left( n - 1 \right) x^{n - 2} \]

\[ \Rightarrow x y_2 + y_1 = \left( n - 1 \right) y_1 + \frac{\left( n - 1 \right) x^{n - 1}}{x}\]

\[ \Rightarrow x^2 y_2 + x y_1 = x\left( n - 1 \right) y_1 + \left( n - 1 \right) x^{n - 1} \]

\[ \Rightarrow x^2 y_2 + x y_1 = x\left( n - 1 \right) y_1 + \left( n - 1 \right)\left\{ x y_1 - \left( n - 1 \right)y \right\}\]

\[ \Rightarrow x^2 y_2 + x y_1 = x\left( n - 1 \right) y_1 + \left( n - 1 \right)x y_1 - \left( n - 1 \right)^2 y\]

\[ \Rightarrow x^2 y_2 + x y_1 = 2x\left( n - 1 \right) y_1 - \left( n - 1 \right)^2 y\]

\[ \Rightarrow x^2 y_2 + x y_1 - 2x\left( n - 1 \right) y_1 = - \left( n - 1 \right)^2 y\]

\[ \Rightarrow x^2 y_2 + x y_1 \left( 1 - 2n + 2 \right) = - \left( n - 1 \right)^2 y\]

\[ \Rightarrow x^2 y_2 + \left( 3 - 2n \right)x y_1 = - \left( n - 1 \right)^2 y\]

shaalaa.comSimple Problems on Applications of Derivatives Report Error Is there an error in this question or solution? Q 24Q 23Q 25Chapter 12: Higher Order Derivatives - Exercise 12.3 [Page 24]

APPEARS IN

RD Sharma Class 12 MathsChapter 12 Higher Order DerivativesExercise 12.3 | Q 24 | Page 24

Video TutorialsVIEW ALL [1]

  • view Video Tutorials For All Subjects
  • Simple Problems on Applications of Derivativesvideo tutorial04:39:41

RELATED QUESTIONS

Differentiate \[e^{\sin^{- 1} 2x}\] ?

If \[y = \log \left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\]prove that \[\frac{dy}{dx} = \frac{x - 1}{2x \left( x + 1 \right)}\] ?

If \[y = e^x + e^{- x}\] prove that \[\frac{dy}{dx} = \sqrt{y^2 - 4}\] ?

Differentiate \[\tan^{- 1} \left\{ \frac{x}{\sqrt{a^2 - x^2}} \right\}, - a < x < a\] ?

Differentiate \[\cos^{- 1} \left( \frac{x + \sqrt{1 - x^2}}{\sqrt{2}} \right), - 1 < x < 1\] ?

Differentiate \[\tan^{- 1} \left( \frac{x - a}{x + a} \right)\] ?

Differentiate \[\tan^{- 1} \left\{ \frac{x^{1/3} + a^{1/3}}{1 - \left( a x \right)^{1/3}} \right\}\] ?

If \[y = \sin^{- 1} \left( 6x\sqrt{1 - 9 x^2} \right), - \frac{1}{3\sqrt{2}} < x < \frac{1}{3\sqrt{2}}\] \[\frac{dy}{dx} \] ?

Find \[\frac{dy}{dx}\] in the following case \[x^{2/3} + y^{2/3} = a^{2/3}\] ?

Find \[\frac{dy}{dx}\] in the following case \[e^{x - y} = \log \left( \frac{x}{y} \right)\] ?

If \[xy = 1\] prove that \[\frac{dy}{dx} + y^2 = 0\] ?

If \[\sec \left( \frac{x + y}{x - y} \right) = a\] Prove that \[\frac{dy}{dx} = \frac{y}{x}\] ?

If \[\tan^{- 1} \left( \frac{x^2 - y^2}{x^2 + y^2} \right) = a\] Prove that \[\frac{dy}{dx} = \frac{x}{y}\frac{\left( 1 - \tan a \right)}{\left( 1 + \tan a \right)}\] ?

Differentiate \[x^{1/x}\] ?

Differentiate \[\sin \left( x^x \right)\] ?

Find \[\frac{dy}{dx}\] \[y = e^{3x} \sin 4x \cdot 2^x\] ?

If \[e^y = y^x ,\] prove that\[\frac{dy}{dx} = \frac{\left( \log y \right)^2}{\log y - 1}\] ?

If \[xy = e^{x - y} , \text{ find } \frac{dy}{dx}\] ?

\[\text{ If }\cos y = x\cos\left( a + y \right),\text{ where } \cos a \neq \pm 1, \text{ prove that } \frac{dy}{dx} = \frac{\cos^2 \left( a + y \right)}{\sin a}\] ?

Find \[\frac{dy}{dx}\] , when \[x = b \sin^2 \theta \text{ and } y = a \cos^2 \theta\] ?

Find \[\frac{dy}{dx}\] when \[x = \frac{2 t}{1 + t^2} \text{ and } y = \frac{1 - t^2}{1 + t^2}\] ?

If \[x = a\left( t + \frac{1}{t} \right) \text{ and y } = a\left( t - \frac{1}{t} \right)\] ,prove that \[\frac{dy}{dx} = \frac{x}{y}\]?

Differentiate \[\tan^{- 1} \left( \frac{2x}{1 - x^2} \right)\] with respect to \[\cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right),\text { if }0 < x < 1\] ?

Let g (x) be the inverse of an invertible function f (x) which is derivable at x = 3. If f (3) = 9 and `f' (3) = 9`, write the value of `g' (9)`.

If \[- \frac{\pi}{2} < x < 0 \text{ and y } = \tan^{- 1} \sqrt{\frac{1 - \cos 2x}{1 + \cos 2x}}, \text{ find } \frac{dy}{dx}\] ?

If \[y = \sin^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) + \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right),\text{ find } \frac{dy}{dx}\] ?

If \[y = \log \left| 3x \right|, x \neq 0, \text{ find } \frac{dy}{dx} \] ?

Differential coefficient of sec(tan−1 x) is ______.

If \[\sin \left( x + y \right) = \log \left( x + y \right), \text { then } \frac{dy}{dx} =\] ___________ .

If \[f\left( x \right) = \left| x^2 - 9x + 20 \right|\] then `f' (x)` is equal to ____________ .

If \[y = \frac{1}{1 + x^{a - b} +^{c - b}} + \frac{1}{1 + x^{b - c} + x^{a - c}} + \frac{1}{1 + x^{b - a} + x^{c - a}}\] then \[\frac{dy}{dx}\] is equal to ______________ .

If x = cos θ, y = sin3 θ, prove that \[y\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 = 3 \sin^2 \theta\left( 5 \cos^2 \theta - 1 \right)\] ?

If y = sin (sin x), prove that \[\frac{d^2 y}{d x^2} + \tan x \cdot \frac{dy}{dx} + y \cos^2 x = 0\] ?

If y = 3 cos (log x) + 4 sin (log x), prove that x2y2 + xy1 + y = 0 ?

If y = cot x show that \[\frac{d^2 y}{d x^2} + 2y\frac{dy}{dx} = 0\] ?

If \[x = 3 \cos t - 2 \cos^3 t, y = 3\sin t - 2 \sin^3 t,\] find \[\frac{d^2 y}{d x^2} \] ?

\[\text { If }y = A e^{- kt} \cos\left( pt + c \right), \text { prove that } \frac{d^2 y}{d t^2} + 2k\frac{d y}{d t} + n^2 y = 0, \text { where } n^2 = p^2 + k^2 \] ?

If y = a + bx2, a, b arbitrary constants, then

f(x) = xx has a stationary point at ______.

Download the Shaalaa app from the Google Play Store Question Bank with Solutions
  • Maharashtra Board Question Bank with Solutions (Official)
Textbook Solutions
  • Balbharati Solutions (Maharashtra)
  • Samacheer Kalvi Solutions (Tamil Nadu)
  • NCERT Solutions
  • RD Sharma Solutions
  • RD Sharma Class 10 Solutions
  • RD Sharma Class 9 Solutions
  • Lakhmir Singh Solutions
  • TS Grewal Solutions
  • ICSE Class 10 Solutions
  • Selina ICSE Concise Solutions
  • Frank ICSE Solutions
  • ML Aggarwal Solutions
NCERT Solutions
  • NCERT Solutions for Class 12 Maths
  • NCERT Solutions for Class 12 Physics
  • NCERT Solutions for Class 12 Chemistry
  • NCERT Solutions for Class 12 Biology
  • NCERT Solutions for Class 11 Maths
  • NCERT Solutions for Class 11 Physics
  • NCERT Solutions for Class 11 Chemistry
  • NCERT Solutions for Class 11 Biology
  • NCERT Solutions for Class 10 Maths
  • NCERT Solutions for Class 10 Science
  • NCERT Solutions for Class 9 Maths
  • NCERT Solutions for Class 9 Science
Board/University Study Material
  • CBSE Study Material
  • Maharashtra State Board Study Material
  • Tamil Nadu State Board Study Material
  • CISCE ICSE / ISC Study Material
  • Mumbai University Engineering Study Material
Question Paper Solutions
  • CBSE Previous Year Question Paper With Solution for Class 12 Arts
  • CBSE Previous Year Question Paper With Solution for Class 12 Commerce
  • CBSE Previous Year Question Paper With Solution for Class 12 Science
  • CBSE Previous Year Question Paper With Solution for Class 10
  • Maharashtra State Board Previous Year Question Paper With Solution for Class 12 Arts
  • Maharashtra State Board Previous Year Question Paper With Solution for Class 12 Commerce
  • Maharashtra State Board Previous Year Question Paper With Solution for Class 12 Science
  • Maharashtra State Board Previous Year Question Paper With Solution for Class 10
  • CISCE ICSE / ISC Board Previous Year Question Paper With Solution for Class 12 Arts
  • CISCE ICSE / ISC Board Previous Year Question Paper With Solution for Class 12 Commerce
  • CISCE ICSE / ISC Board Previous Year Question Paper With Solution for Class 12 Science
  • CISCE ICSE / ISC Board Previous Year Question Paper With Solution for Class 10
Other Resources
  • Entrance Exams
  • Video Tutorials
  • Question Papers
  • Question Bank Solutions
  • Question Search (beta)
  • More Quick Links
  • Privacy Policy
  • Terms and Conditions
  • Contact Us
  • About Us
  • Shaalaa App
  • Ad-free Subscriptions
© 2024 Shaalaa.com | Contact Us | Privacy PolicyShare 0 0 0 0 0Notifications

Select a course

CANCELuserLoginCreate free accountemail:password:Log in Forgot password?CourseCommerce (English Medium) Class 12 CBSEPUC Science 2nd PUC Class 12 Karnataka Board PUCArts (English Medium) Class 12 CBSEScience (English Medium) Class 12 CBSEchange
  • Home
  • Class 1 - 4
  • Class 5 - 8
  • Class 9 - 10
  • Class 11 - 12
  • Entrance Exams
  • Search by Text or Image
  • Textbook Solutions
  • Study Material
  • Remove All Ads
  • Change mode
  • Log out
Use app×

Từ khóa » X^(n-1)log X