[Solved] If Y = Xn-1 Ln X, Then The Nth Order Derivative Of Y Wi

Given:

y = xn – 1 log x ----(1)

Diff. (1) w.r.t. ‘x’ we get;

\({y_1} = \left( {n - 1} \right){x^{n - 2}}\log x + {x^{n - 1}}.\frac{1}{x}\)

xy1 = (n - 1) xn - 1 log x + xn – 1

xy1 = (n - 1) y + xn – 1 ----(2)

∵ y = xn – 1 log x

Diff. (2) (n - 1) times by Leibinitz’s theorem,

Xyn + (n - 1) yn – 1 = (n - 1) yn – 1 + (n - 1)!

xyn = (n - 1)!

\({y_n} = \frac{{\left( {n - 1} \right)!}}{x}\)

nth derivative with respect to \(x = \frac{1}{2}\) is;

yn = 2 ⋅ [(n - 1)!]

Download Solution PDF Share on Whatsapp

Từ khóa » X^(n-1)log X