Lí Thuyết Nguyên Hàm | SGK Toán Lớp 12
Có thể bạn quan tâm
1. Nguyên hàm và tính chất
a. Định nghĩa
Kí hiệu \(K\) là khoảng, đoạn hoặc nửa khoảng của \(R\).
Cho hàm số \(f(x)\) xác định trên \(K\).
Hàm số \(F(x)\) được gọi là nguyên hàm của hàm số \(f(x)\) trên \(K\) nếu \(F'(x) = f(x)\) với mọi \(x ∈ K\).
b. Định lý
1) Nếu \(F(x)\) là một nguyên hàm của hàm số \(f(x)\) trên K thì với mỗi hằng số \(C\), hàm số \(G(x) = F(x)+C\) cũng là một nguyên hàm của hàm số \(f(x)\) trên \(K\).
2) Ngược lại, nếu \(F(x)\) là một nguyên hàm của hàm số \(f(x)\) trên \(K\) thì mọi nguyên hàm của \(f(x)\) trên \(K\) đều có dạng \(F(x) + C\) với \(C\) là một hằng số tùy ý.
Kí hiệu họ nguyên hàm của hàm số \(f(x)\) là \(∫f(x)dx\)
Khi đó : \(∫f(x)dx =F(x) + C , C ∈ R.\)
c. Tính chất của nguyên hàm
\(∫f(x)dx = F(x) + C, C ∈ R.\)
\(∫kf(x)dx =k ∫f(x)dx \)(với k là hằng số khác 0)
\(∫(f(x) ± g(x)) = ∫f(x)dx ± ∫g(x)dx\)
d. Sự tồn tại nguyên hàm
Định lí: Mọi hàm số \(f(x)\) liên tục trên \(K\) đều có nguyên hàm trên \(K\).
Bảng nguyên hàm của các hàm số thường gặp
Nguyên hàm của hàm số sơ cấp | Nguyên hàm của hàm hợp |
\(\int 0dx = C\) \(\int dx = x + C\) \(\int x^{\alpha }dx\) = \(\frac{x^{\alpha +1}}{\alpha +1} +C\) (\(\alpha≠ -1)\) \(\int \frac{1}{x}dx =ln\left | x \right | +C\) \(\int e^{x}dx = e^{x} +C\) \(\int a^{x}dx = \frac{a^{x}}{lna} + C (a>0, a ≠ 1)\) \(\int cosxdx = sinx + C\) \(\int sinxdx = - cosx + C\) \(\int \frac{1}{(cos^{2}x)}dx = tanx + C\) \(\int \frac{1}{(sin^{2}x)}dx = - cotx + C\) |
\(\int u^{\alpha }dx = \frac{u^{\alpha +1}}{u'.(\alpha +1)}+ C\) \(\int {\frac{1}{u}} dx = \frac{{ln|u|}}{{u'}} + C\) \(\int {{e^u}} dx = \frac{{{e^u}}}{{u'}} + C\) \(\int {{a^u}} dx = \frac{{{a^u}}}{{u'.lna}} + C\) \(\int {cosudx = \frac{{sinu}}{{u'}} + C} \) \(\int {sinudx = {\rm{ }}\frac{{ - cosu}}{{u'}}{\rm{ }} + C} \) \(\int {\frac{1}{{(co{s^2}u)}}} du = {\rm{ }}\frac{{tanu}}{{u'}} + C\) \(\int {\frac{1}{{(si{n^2}u)}}} du = \frac{{ - cotu}}{{u'}} + C\) |
2. Phương pháp tìm nguyên hàm
a) Phương pháp đổi biến số
Định lý 1: Nếu \(\int {f\left( u \right)du} = F\left( u \right) + C\) và \(u = u\left( x \right)\) là hàm số có đạo hàm liên tục thì \(\int {f\left( {u\left( x \right)} \right)u'\left( x \right)dx} = F\left( {u\left( x \right)} \right) + C\)
Hệ quả: \(\int {f\left( {ax + b} \right)dx} = \frac{1}{a}F\left( {ax + b} \right) + C\left( {a \ne 0} \right)\)
b. Phương pháp tính nguyên hàm từng phần
Định lý 2: Nếu hai hàm số \(u = u\left( x \right)\) và \(y = v\left( x \right)\) có đạo hàm liên tục trên \(K\) thì \(\int {u\left( x \right)v'\left( x \right)dx} = u\left( x \right)v\left( x \right) - \int {u'\left( x \right)v\left( x \right)dx} \).
Chú ý: Viết gọn \(\int {udv} = uv - \int {vdu} \).
Loigiaihay.com
Từ khóa » Nguyên Hàm Của 0dx
-
Tìm Nguyên Hàm 0 | Mathway
-
Bảng đầy đủ Nhất CÔNG THỨC TÍNH NGUYÊN HÀM
-
Bảng Nguyên Hàm Các Hàm Số Thường Gặp (Đầy Đủ) - Mathvn
-
Công Thức Nguyên Hàm
-
Tại Sao Nguyên Hàm Của 0 Lại Bằng Một Hằng Số C Bất Kỳ?
-
Bảng Các Công Thức Nguyên Hàm Từ Căn Bản Tới Nâng Cao - Công ...
-
Công Thức Nguyên Hàm, Bảng Nguyên Hàm đầy đủ & Mở Rộng
-
Các Dạng Nguyên Hàm Thường Gặp Và Ví Dụ Cụ Thể - TopLoigiai
-
Lý Thuyết Nguyên Hàm, Tính Chất Và định Nghĩa, định Lý
-
Bảng Nguyên Hàm Và Công Thức Nguyên Hàm Đầy Đủ, Chi Tiết
-
Lí Thuyết Nguyên Hàm: Bài 1. Nguyên Hàm
-
Toán 12 - Nguyên Hàm – Tích Phân - Ứng Dụng Hình Học Của Tích Phân
-
Bảng Nguyên Hàm Và Các Công Thức Bảng Nguyên Hàm Cần Nhớ