[LỜI GIẢI] Cho Hai Nửa đường Tròn đường Kính AB Và BC Tiếp Xúc Nha

Lời giải của Tự Học 365

Phương pháp giải:

- Tính độ dài \(CD\).

- Sử dụng định lí đường trung bình của hình thang, chứng minh \(E\) là trung điểm của \(HD\), từ đó tính độ dài \(HC\), từ đó áp dụng định lí Pytago tính \(O'H\).

- Chứng minh \(O',\,\,H,\,\,F\) thẳng hàng, sử dụng quan hệ vuông góc giữa đường kính và dây cung và tiên đề Ơ-clit.

- Tính \(HF = O'F - O'H\).

Giải chi tiết:

Vì \(CD\) là tiếp tuyến của \(\left( O \right)\) nên \(\angle ODC = {90^0}\) \( \Rightarrow \Delta OCD\) vuông tại \(D\).

Ta có \(OB = \dfrac{1}{2}AB = 9\) \( \Rightarrow OC = OB + BC = 9 + 18 = 27\).

Áp dụng định lí Pytago trong tam giác vuông \(OCD\) ta có:

\(\begin{array}{l}C{D^2} = O{C^2} - O{D^2}\\C{D^2} = {27^2} - {9^2}\\C{D^2} = 648\\ \Rightarrow CD = 18\sqrt 2 \end{array}\)

Vì \(AB = BC = 18 \Rightarrow OB = O'B = 9\) \( \Rightarrow O\) là trung điểm của \(OO'\) (1).

Ta có: \(OD \bot CD\,\,\,\left( {cmt} \right)\)

            \(O'H \bot EC \Rightarrow O'H \bot CD\) (quan hệ vuông góc giữa đường kính và dây cung).

            \(BE \bot CE \Rightarrow BE \bot CD\) (\(\angle BEC = {90^0}\) do là góc nội tiếp chắn nửa đường tròn \(\left( {O'} \right)\)).

\( \Rightarrow OD\parallel O'H\parallel BE\,\,\left( 2 \right)\).

Từ (1) và (2) \( \Rightarrow E\) là trung điểm của \(HD\) (định lí đường trung bình của hình thang).

\( \Rightarrow DE = EH = CH\).

\( \Rightarrow CH = \dfrac{1}{3}CD = \dfrac{1}{3}.18\sqrt 2  = 6\sqrt 2 \).

Áp dụng định lí Pytago trong tam giác vuông \(O'HC\) có:

\(\begin{array}{l}O'{H^2} = O'{C^2} - H{C^2}\\O'{H^2} = {9^2} - {\left( {6\sqrt 2 } \right)^2}\\O'{H^2} = 9\\ \Rightarrow O'H = 3\end{array}\)

Vì \(F\) là điểm chính giữa của chung \(CE\) nên \(cungCF = cungEF \Rightarrow CF = EF\) (hai cung bằng nhau căng hai dây bằng nhau), do đó tam giác \(EFC\) cân tại \(F\), suy ra \(FH \bot CE\) (đường trung tuyến đồng thời là đường cao).

Lại có \(O'H \bot CE\,\,\left( {cmt} \right)\) \( \Rightarrow O'H \equiv FH\) (tiên đề Ơ-clit) hay \(O',\,\,H,\,\,F\) thẳng hàng.

Vậy \(HF = O'F - O'H = 9 - 3 = 6\).

Chọn B.

Từ khóa » đường Kính Tiếp Xúc