[LỜI GIẢI] Hai Phương Trình 2log 5( 3x - 2x - 8 ) = 1 - Log 1 - Tự Học 365
Có thể bạn quan tâm
Ôn đúng trọng tâm – Học chắc từ hôm nay
BẮT ĐẦU NGAY
Câu hỏi
Nhận biếtHai phương trình \(2{\log _5}\left( {3x - 1} \right) + 1 = {\log _{\sqrt[3]{5}}}\left( {2x + 1} \right)\) và \({\log _2}\left( {{x^2} - 2x - 8} \right) = 1 - {\log _{\frac{1}{2}}}\left( {x + 2} \right)\) lần lượt có 2 nghiệm duy nhất là \({x_1};{x_2}\). Tính tổng \({x_1} + {x_2}\):
A. 4 B. 6 C. 8 D. 10Đáp án đúng: C
Lời giải của Tự Học 365
Giải chi tiết:
Giải phương trình: \(2{\log _5}\left( {3x - 1} \right) + 1 = {\log _{\sqrt[3]{5}}}\left( {2x + 1} \right)\)
ĐK: \(\left\{ \begin{array}{l}3x - 1 > 0\\2x + 1 > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x > \frac{1}{3}\\x > - \frac{1}{2}\end{array} \right. \Leftrightarrow x > \frac{1}{3}\)
\(\begin{array}{l}\,\,\,\,\,\,2{\log _5}\left( {3x - 1} \right) + 1 = {\log _{\sqrt[3]{5}}}\left( {2x + 1} \right)\\ \Leftrightarrow 2.{\log _5}\left( {3x - 1} \right) + 1 = 3.{\log _5}\left( {2x + 1} \right)\\ \Leftrightarrow {\log _5}{\left( {3x - 1} \right)^2} - {\log _5}{\left( {2x + 1} \right)^3} = - 1\\ \Leftrightarrow {\log _5}\frac{{{{\left( {3x - 1} \right)}^2}}}{{{{\left( {2x + 1} \right)}^3}}} = - 1\\ \Leftrightarrow \frac{{{{\left( {3x - 1} \right)}^2}}}{{{{\left( {2x + 1} \right)}^3}}} = \frac{1}{5}\\ \Leftrightarrow 5{\left( {3x - 1} \right)^2} = {\left( {2x + 1} \right)^3}\\ \Leftrightarrow 5\left( {9{x^2} - 6x + 1} \right) = 8{x^3} + 12{x^2} + 6x + 1\\ \Leftrightarrow 8{x^3} - 33{x^2} + 36x - 4 = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = \frac{1}{8}\,\,\left( {ktm} \right)\\x = 2\,\,\,\left( {tm} \right)\end{array} \right. \Rightarrow {x_1} = 2\end{array}\)
Giải phương trình: \({\log _2}\left( {{x^2} - 2x - 8} \right) = 1 - {\log _{\frac{1}{2}}}\left( {x + 2} \right)\)
ĐK : \(\left\{ \begin{array}{l}{x^2} - 2x - 8 > 0\\x + 2 > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}x > 4\\x - 2\end{array} \right. \Leftrightarrow x > 4\)
\(\begin{array}{l}{\log _2}\left( {{x^2} - 2x - 8} \right) = 1 - {\log _{\frac{1}{2}}}\left( {x + 2} \right)\\ \Leftrightarrow {\log _2}\left( {{x^2} - 2x - 8} \right) = 1 + {\log _2}\left( {x + 2} \right)\\ \Leftrightarrow {\log _2}\left( {{x^2} - 2x - 8} \right) - {\log _2}\left( {x + 2} \right) = 1\\ \Rightarrow {\log _2}\frac{{{x^2} - 2x - 8}}{{x + 2}} = 1\\ \Leftrightarrow \frac{{{x^2} - 2x - 8}}{{x + 2}} = 2\\ \Leftrightarrow {x^2} - 2x - 8 = 2x + 4\\ \Leftrightarrow {x^2} - 4x - 12 = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 6\,\,\,\,\,\,\,\left( {tm} \right)\\x = - 2\,\,\left( {ktm} \right)\end{array} \right. \Rightarrow {x_2} = 6\end{array}\)
Vậy \({x_1} + {x_2} = 2 + 6 = 8\)
Chọn C.
Ý kiến của bạn Hủy
Luyện tập
Câu hỏi liên quan
-
Tìm số nguyên dương n nhỏ nhất sao cho z1 =
Chi tiết
là số thực và z2 =
là số ảo. -
câu 7
Chi tiết
-
Giải phương trình (1 – i)z + (2 – i) = 4 – 5i trên tập số phức.
Chi tiết -
Giải phương trình : z3 + i = 0
Chi tiết -
Câu 2: Đề thi thử THPT Hà Trung - Thanh Hóa
Chi tiết
-
Giải phương trình 72x + 1 – 8.7x + 1 = 0.
Chi tiết -
Giải phương trình 31 – x – 3x + 2 = 0.
Chi tiết -
Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d:
Chi tiết
=
=
và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên. -
Giải phương trình: (sin2x + cos2x)cosx + 2cos2x - sinx = 0
Chi tiết -
câu 2
Chi tiết
Đăng ký
Năm sinh 20012002200320042005200620072008200920102011201220132014201520162017201820192020 hoặc Đăng nhập nhanh bằng:
(*) Khi bấm vào đăng ký tài khoản, bạn chắc chắn đã đoc và đồng ý với Chính sách bảo mật và Điều khoản dịch vụ của Tự Học 365. Từ khóa » Hai Phương Trình 2log5(3x-1)+1=log
-
Hai Phương Trình \(2{\log _5}\left( {3x - 1} \righ... - CungHocVui
-
Phương Trình 2^log5(x+3) = X Có Tất Cả Bao Nhiêu Nghiệm
-
CHỦ ĐỀ PHƯƠNG TRÌNH LOGARIT BẤT PHƯƠNG TRÌNH ... - Issuu
-
Nghiệm Nhỏ Nhất Của Phương Trình \({\log _5}\left( {{x^2} - Hoc247
-
Cho Phương Trình \({\log _5}\left( {{5^x} - 5} \right) = 1\). - Hoc247
-
(PDF) Bai Mu Logarit | Gs. Hoang Anh
-
[PDF] Phương Pháp Giải Phương Trình Mũ Và Logarit - QNQ EDUCATION
-
Tập Nghiệm Của Bất Phương Trình Log5(3x - 1) < 1 Là: | Cungthi.online
-
Phương Trình 2 2 2 Log 3 Log 1 Log5 Xx Có Nghiệm Là | HoiCay - Top ...
-
Câu 15Hai Phương Trình 2log (3x 1)1... | Xem Lời Giải Tại QANDA
-
Bất Phương Trình Logarit Mũ Và Hệ Bất Phương Trình Logarit
-
CHUYÊN ĐỀ : PHƯƠNG TRÌNH LOGARIT CỰC HAY - Tài Liệu Text
-
PHƯƠNG TRÌNH VÀ BÂT PHƯƠNG TRÌNH MŨ - Tài Liệu Mới