[LỜI GIẢI] Tìm Nguyên Hàm Của Hàm Số F( X ) = Căn 2x - 1 - Tự Học 365

LUYỆN TẬP TRẮC NGHIỆM 50000+ CÂU HỎI

DÀNH CHO MỌI LỚP 6 ĐẾN 12

TRUY CẬP NGAY XEM CHI TIẾT Tìm nguyên hàm của hàm số f( x ) = căn 2x - 1 . Tìm nguyên hàm của hàm số f( x ) = căn 2x - 1 .

Câu hỏi

Nhận biết

Tìm nguyên hàm của hàm số\(f\left( x \right) = \sqrt {2x - 1} .\)

A. \(\int {f\left( x \right){\rm{d}}x}  = {2 \over 3}\left( {2x - 1} \right)\sqrt {2x - 1}  + C.\) B. \( \int {f\left( x \right){\rm{d}}x}  = {1 \over 3}\left( {2x - 1} \right)\sqrt {2x - 1}  + C.\) C. \(\int {f\left( x \right){\rm{d}}x}  =  - {1 \over 3}\sqrt {2x - 1}  + C.\) D. \(\int {f\left( x \right){\rm{d}}x}  = {1 \over 2}\sqrt {2x - 1}  + C\)

Đáp án đúng: B

Lời giải của Tự Học 365

Giải chi tiết:

Hướng dẫn giải chi tiết

Đặt\(t = \sqrt {2x - 1}  \Leftrightarrow {t^2} = 2x - 1 \Leftrightarrow 2t\,{\rm{d}}t = 2\,{\rm{d}}x \Leftrightarrow t\,{\rm{d}}t = {\rm{d}}x.\)

Khi đó\(\int {f\left( x \right){\rm{d}}x}  = \int {{t^2}\,{\rm{d}}t}  = {{{t^3}} \over 3} + C = {1 \over 3}\left( {2x - 1} \right)\sqrt {2x - 1}  + C.\)

Chọn B.

Ý kiến của bạn Hủy

Δ

Luyện tập

Câu hỏi liên quan

  • Tìm số nguyên dương n nhỏ nhất sao cho z<sub>1 </sub>=

    Tìm số nguyên dương n nhỏ nhất sao cho z1 = là số thực và z2 = là số ảo.

    Chi tiết
  • câu 2 

    câu 2 

    Chi tiết
  • Câu 2: Đề thi thử THPT Hà Trung - Thanh Hóa

    Câu 2: Đề thi thử THPT Hà Trung - Thanh Hóa

    Chi tiết
  • Giải phương trình : z<sup>3</sup> + i = 0

    Giải phương trình : z3 + i = 0

    Chi tiết
  • Giải phương trình 3<sup>1 – x</sup> – 3<sup>x</sup> + 2 = 0.

    Giải phương trình 31 – x – 3x + 2 = 0.

    Chi tiết
  • Giải phương trình: (sin2x + cos2x)cosx + 2cos2x - sinx = 0

    Giải phương trình: (sin2x + cos2x)cosx + 2cos2x - sinx = 0

    Chi tiết
  • Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y

    Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d: = = và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình  mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.

    Chi tiết
  • câu 7 

    câu 7 

    Chi tiết
  • Giải phương trình (1 – i)z + (2 – i) = 4 – 5i trên tập số ph

    Giải phương trình (1 – i)z + (2 – i) = 4 – 5i trên tập số phức. 

    Chi tiết
  • Giải phương trình 7<sup>2x + 1</sup> – 8.7<sup>x</sup> + 1 =

    Giải phương trình 72x + 1 – 8.7x + 1 = 0.

    Chi tiết

Đăng ký

Năm sinh 20012002200320042005200620072008200920102011201220132014201520162017201820192020 hoặc Đăng nhập nhanh bằng: đăng nhập bằng google (*) Khi bấm vào đăng ký tài khoản, bạn chắc chắn đã đoc và đồng ý với Chính sách bảo mật và Điều khoản dịch vụ của Tự Học 365.

Từ khóa » Nguyên Hàm (x-1)^2/(2x+1)^4