Lý Thuyết Chia đa Thức Cho đơn Thức | SGK Toán Lớp 8
Có thể bạn quan tâm
1. Qui tắc
Muốn chia đa thức \(A\) cho đơn thức \(B\) (trường hợp các hạng tử của đa thức \(A\) đều chia hết cho đơn thức \(B\)), ta chia mỗi hạng tử của \(A\) cho \(B\) rồi cộng các kết quả với nhau.
2. Chú ý
Trường hợp đa thức \(A\) có thể phân tích thành nhân tử, thường ta phân tích trước để rút gọn cho nhanh.
3. Các dạng toán cơ bản
Dạng 1: Thực hiện phép tính và rút gọn biểu thức
Phương pháp:
Sử dụng quy tắc chia đa thức cho đơn thức để thực hiện phép tính và rút gọn biểu thức.
Ví dụ: Thực hiện phép tính \(\left( -12{{x}^{4}}y+4{{x}^{3}}-8{{x}^{2}}{{y}^{2}} \right):\left( -4{{x}^{2}} \right)\)
Ta có:
\(\begin{array}{l}\left( { - 12{x^4}y + 4{x^3} - 8{x^2}{y^2}} \right):\left( { - 4{x^2}} \right)\\ = \left( { - 12{x^4}y} \right):\left( { - 4{x^2}} \right) + \left( {4{x^3}} \right):\left( { - 4{x^2}} \right) - \left( {8{x^2}{y^2}} \right):\left( { - 4{x^2}} \right)\\ = 3{x^2}y - x + 2{y^2}.\end{array}\)
Dạng 2: Tính giá trị của biểu thức tại \(x = {x_0}\)
Phương pháp:
Thay \(x = {x_0}\) vào biểu thức rồi thực hiện phép tính.
Nếu biểu thức có nhiều biến thì ta thay lần lượt từng biến theo giả thiết.
Ví dụ:
Tính giá trị biểu thức \(A = \left( {{x^2}y + {y^2}x} \right):xy\) tại \(x=1;y=1\)
Ta có:
\(\begin{array}{l}A = \left( {{x^2}y + {y^2}x} \right):xy\\ = {x^2}y:xy + {y^2}x:xy\\ = x + y\end{array}\)
Với \(x=1;y=1\) ta có: \(A = x + y = 1 + 1 = 2\)
Dạng 3: Tìm \(m\) để phép tính chia cho trước là phép chia hết.
Phương pháp:
Sử dụng nhận xét:
Đa thức A chia hết cho đơn thức B nếu các hạng tử của đa thức \(A\) đều chia hết cho đơn thức \(B\).
Đơn thức \(A\) chia hết cho đơn thức \(B\) khi mỗi biến của \(B\) đều là biến của \(A\) với số mũ nhỏ hơn hoặc bằng số mũ của nó trong \(A\) .
Ví dụ: Tìm số tự nhiên n để đa thức A chia hết cho đơn thức B:
\(A=7{{x}^{n-1}}{{y}^{5}}-5{{x}^{3}}{{y}^{4}}\)
\(B=5{{x}^{2}}{{y}^{n}}\)
Ta có:
\(A:B=\left( 7{{x}^{n-1}}{{y}^{5}}-5{{x}^{3}}{{y}^{4}} \right):\left( 5{{x}^{2}}{{y}^{n}} \right)\)\(=\left( 7{{x}^{n-1}}{{y}^{5}} \right):\left( 5{{x}^{2}}{{y}^{4}} \right)\)\(-\left( 5{{x}^{3}}{{y}^{4}} \right):\left( 5{{x}^{2}}{{y}^{n}} \right)\)
Đa thức A chia hết cho đơn thức B khi \(\left\{ \begin{array}{l}n - 1 \ge 2\\4 \ge n\end{array}\right. \Leftrightarrow \left\{ \begin{array}{l}n \ge 3\\n \le 4\end{array} \right.\)
\(\Rightarrow 3 \le n \le 4\) mà \(n\in \mathbb N\) nên \(n\in\{3;4\}\)
Loigiaihay.com
Từ khóa » Cách Chia đa Thức Lớp 8
-
LÝ THUYẾT VÀ BÀI TẬP CHIA ĐA THỨC MỘT BIẾN ĐÃ SẮP XẾP
-
Chia đa Thức Cho đa Thức: Lý Thuyết, Ví Dụ Và Bài Tập - DINHNGHIA.VN
-
Chia đa Thức Cho đa Thức Toán Lớp 8 | Lý Thuyết Và Bài Tập Cơ Bản ...
-
Chia đa Thức Cho đa Thức: Lý Thuyết & Bài Tập
-
Cách Chia đơn Thức Cho đơn Thức, đa Thức Cho đơn Thức Và đa ...
-
Cách Chia đa Thức Cho đa Thức [Lớp 8]: Lý Thuyết & Bài Tập Vận Dụng
-
2 CÁCH CHIA ĐA THỨC CHO ĐA THỨC MỘT BIẾN VÀ HAI BIẾN
-
Chuyên đề: Chia đa Thức - Toán Lớp 8 - Trường Quốc Học
-
Cách Giải Bài Toán Dạng: Chia đa Thức Toán Lớp 8 | Chuyên đề Toán 8
-
Chương I. PHÉP NHÂN VÀ PHÉP CHIA ĐA THỨC
-
Giải Bài Tập Toán Lớp 8: Bài 11.Chia đa Thức Cho đơn Thức
-
Toán Lớp 8 - 1.12. Chia đa Thức Một Biến đã Sắp Xếp - Học Thật Tốt
-
Cách Chia đa Thức Một Biến đã Sắp Xếp Lớp 8 Và Cách Giải
-
Lý Thuyết Chia đa Thức Một Biến đã Sắp Xếp Hay, Chi Tiết | Toán Lớp 8