Lý Thuyết Giá Trị Lớn Nhất Và Nhỏ Nhất Của Hàm Số
Có thể bạn quan tâm
1. Định nghĩa
Cho hàm số \(y = f(x)\) xác định trên tập \(D.\)
- Số \(M\) là giá trị lớn nhất (GTLN) của hàm số \(f\) trên \(D \)
\(⇔\left\{ \matrix{ f(x) \le M,\forall x \in D \hfill \cr \exists \, {x_0} \in D\text{ sao cho }f({x_0}) = M \hfill \cr} \right.\)
Kí hiệu : \(M=\underset{D}{\max} f(x).\)
- Số \(m\) là giá trị nhỏ nhất (GTNN) của hàm số \(f\) trên \(D\)
\(⇔\left\{ \matrix{ f(x) \ge m,\forall x \in D \hfill \cr \exists \, {x_0} \in D\text{ sao cho }f({x_0}) = m \hfill \cr} \right.\)
Kí hiệu: \(m=\underset{D}{\min} f(x).\)
2. Cách tính giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên một đoạn
Định lí
Hàm số liên tục trên một đoạn thì có GTLN và GTNN trên đoạn đó.
Quy tắc tìm GTLN, GTNN của hàm số \(y = f(x)\) liên tục trên đoạn [a ; b]
- Tìm các điểm \(x_i ∈ (a ; b)(i = 1, 2, . . . , n)\) mà tại đó \(f'(x_i) = 0\) hoặc \(f'(x_i)\) không xác định.
- Tính \(f(a), f(b), f(x_i) (i = 1, 2, . . . , n) .\)
- Khi đó: \(\underset{[a;b]}{\max} f(x)=\max \left \{ f(a); f(b); f(x_{i}) \right \}\);
\(\underset{[a;b]}{\min} f(x)=\min \left \{ f(a); f(b); f(x_{i}) \right \}\)
3. Chú ý
Để tìm GTLN, GTNN của hàm số \(y=f(x)\) xác định trên tập hợp \(D\), ta có thể khảo sát sự biến thiên của hàm số trên \(D,\) rồi căn cứ vào bảng biến thiên của hàm số mà kết luận về GTLN và GTNN của hàm số.

Loigiaihay.com
Từ khóa » Gtln Và Gtnn Của Hàm Số
-
Các Dạng Bài Tập Tìm Giá Trị Lớn Nhất (GTLN), Giá Trị Nhỏ Nhất (GTNN ...
-
Tóm Tắt Lý Thuyết GTLN Và GTNN Của Hàm Số
-
Tìm Giá Trị Lớn Nhất Nhỏ Nhất Của Hàm Số (Kèm Tài Liệu) - VerbaLearn
-
Chuyên Đề Toán Lớp 12: Hướng Dẫn Giải Bài Tập Tìm Max - Min ...
-
Tìm Giá Trị Lớn Nhất Nhỏ Nhất Của Hàm Số - Lý Thuyết, Bài Tập Có Lời Giải
-
Giá Trị Lớn Nhất Và Nhỏ Nhất Của Hàm Số: Một Số Dạng Toán Và Cách Giải
-
Quy Tắc Tìm GTLN Và GTNN Của Hàm Số
-
Tìm GTLN - GTNN Của Hàm Số Nhiều Biến Trên Miền đóng Và Bị Chặn
-
Bài 3: Giá Trị Lớn Nhất Và Giá Trị Nhỏ Nhất Của Hàm Số - Tìm đáp án,
-
[LỜI GIẢI] Tìm GTLN Và GTNN Của Hàm Số Y = X^5 - 1;2 ] - Tự Học 365
-
Giải Bài 3: Giá Trị Lớn Nhất Và Giá Trị Nhỏ Nhất Của Hàm Số - Tech12h
-
Chuyên đề: Giá Trị Lớn Nhất - Giá Trị Nhỏ Nhất Của Hàm Số
-
Tập Giá Trị Và GTLN – GTNN Của Hàm Số Lượng Giác - Tài Liệu Tự Học ...
-
Tìm GTLN Và GTNN Của Hàm Số Y = (x^5)