Lý Thuyết Góc Tạo Bởi Tia Tiếp Tuyến Và Dây Cung (mới 2022 + Bài Tập)

Lý thuyết Toán 9 Bài 4: Góc tạo bởi tia tiếp tuyến và dây cung

Bài giảng Toán 9 Bài 4: Góc tạo bởi tia tiếp tuyến và dây cung

A. Lý thuyết

1. Định nghĩa

- Góc tạo bởi tia tiếp tuyến và dây cung là góc có đỉnh nằm trên đường tròn, một cạnh là một tia tiếp tuyến còn cạnh kia chứa dây cung của đường tròn.

Ví dụ 1. Cho đường tròn (O) có xy là tiếp tuyến của đường tròn (O) tại A và dây cung AB như hình vẽ.

Lý thuyết Góc tạo bởi tia tiếp tuyến và dây cung chi tiết – Toán lớp 9 (ảnh 1)

Ta thấy BAx^ có đỉnh A nằm trên đường tròn (O) có Ax là tiếp tuyến và AB là dây cung của đường tròn.

Do đó BAx^ là góc tạo bởi tiếp tuyến và dây cung.

Khi đó, BAx^ chắn cung nhỏ AB;

BAy^ chắn cung lớn AB.

2. Định lí

Số đo của góc tạo bởi tiếp tuyến và dây cung bằng nửa số đo của cung bị chắn.

Ví dụ 2. Cho đường tròn (O) có xy là tiếp tuyến của đường tròn (O) tại A và dây cung AB như hình vẽ.

Lý thuyết Góc tạo bởi tia tiếp tuyến và dây cung chi tiết – Toán lớp 9 (ảnh 1)

Khi đó, BAx^ và BAy^ là góc tạo bởi tiếp tiếp và dây cung lần lượt chắn AmB^ và AnB^. Do đó,

Lý thuyết Góc tạo bởi tia tiếp tuyến và dây cung chi tiết – Toán lớp 9 (ảnh 1)

3. Hệ quả

Trong một đường tròn, góc tạo bởi tia tiếp tuyến và dây cung và góc nội tiếp cùng chắn một cung thì bằng nhau.

Ví dụ 2. Cho đường tròn (O) như hình vẽ.

Lý thuyết Góc tạo bởi tia tiếp tuyến và dây cung chi tiết – Toán lớp 9 (ảnh 1)

Trong hình vẽ trên, ACB^ là góc nội tiếp chắn AB⏜ nên

Lý thuyết Góc tạo bởi tia tiếp tuyến và dây cung chi tiết – Toán lớp 9 (ảnh 1)

BAx^ là góc tạo bởi dây cung và tiếp tuyến chắn AB⏜ nên

Lý thuyết Góc tạo bởi tia tiếp tuyến và dây cung chi tiết – Toán lớp 9 (ảnh 1)

B. Bài tập tự luyện

Bài 1. Hai tiếp tuyến tại A và B của đường tròn (O) cắt nhau tại P. Biết APB^ = 55o. Tính số đo cung lớn AB.

Lời giải:

Lý thuyết Góc tạo bởi tia tiếp tuyến và dây cung chi tiết – Toán lớp 9 (ảnh 1)

Lý thuyết Góc tạo bởi tia tiếp tuyến và dây cung chi tiết – Toán lớp 9 (ảnh 1)

Bài 3. Cho đường tròn (O) đường kính AB. Trên tia đối của tia AB lấy điểm M. Kẻ tiếp tuyến MN với đường tròn (O) tại N. Vẽ NH vuông góc với AB.

Chứng minh MNA^=ANH^.

Lời giải:

Lý thuyết Góc tạo bởi tia tiếp tuyến và dây cung chi tiết – Toán lớp 9 (ảnh 1)

Lý thuyết Góc tạo bởi tia tiếp tuyến và dây cung chi tiết – Toán lớp 9 (ảnh 1)

Bài 4. Cho hai tiếp tuyến tại A và B của đường tròn (O) cắt nhau tại M, biết AMB^=40o.

a) Tính AMO^ và AOM^.

b) Tính số đo cung AB nhỏ và số đo cung AB lớn.

Lời giải:

Lý thuyết Góc tạo bởi tia tiếp tuyến và dây cung chi tiết – Toán lớp 9 (ảnh 1)

a) Do MA và MB là hai tiếp tuyến cắt nhau tại M.

Lý thuyết Góc tạo bởi tia tiếp tuyến và dây cung chi tiết – Toán lớp 9 (ảnh 1)

Lý thuyết Góc tạo bởi tia tiếp tuyến và dây cung chi tiết – Toán lớp 9 (ảnh 1)

Vậy số đo cung AB nhỏ và số đo cung AB lớn lần lượt là 140o và 220o.

Xem thêm các bài tổng hợp lý thuyết Toán lớp 9 đầy đủ, chi tiết khác:

Lý thuyết Góc có đỉnh ở bên trong đường tròn. Góc có đỉnh ở bên ngoài đường tròn

Lý thuyết Cung chứa góc

Lý thuyết Tứ giác nội tiếp

Lý thuyết Đường tròn ngoại tiếp. Đường tròn nội tiếp

Lý thuyết Độ dài đường tròn, cung tròn

Từ khóa » định Nghĩa Tia Tiếp Tuyến Và Dây Cung