Lý Thuyết Hỗn Số | Toán Lớp 6 - Chân Trời Sáng Tạo
Có thể bạn quan tâm
I. Hỗn số
Cho $a$ và $b$ là hai số nguyên dương, $a > b$, $a$ không chia hết cho $b$. Nếu $a$ chia cho $b$ được thương là $q$ và số dư là $r$, thì ta viết $\dfrac{a}{b} = q\dfrac{r}{b}$ và gọi $q\dfrac{r}{b}$ là hỗn số.
Đọc là “$q,\,\,r$ phần $b$”.
Ví dụ:
Phép chia $23:4$ có thương là $5$ và số dư là $3$ nên ta có: $\dfrac{{23}}{4} = 5\dfrac{3}{4}$.
Đọc là: “ năm, ba phần tư”.
Chú ý:
Với hỗn số $q\dfrac{r}{b}$ người ta gọi $q$ là phần số nguyên và $\dfrac{r}{b}$ là phần phân số của hỗn số.
Ví dụ:
Hỗn số $5\dfrac{3}{4}$ có phần nguyên là $5$ và phần phân số là $\dfrac{3}{4}$.
II. Đổi hỗn số ra phân số
Ta đổi hỗn số $q\dfrac{r}{b}$ thành phân số, theo quy tắc sau:
$q\dfrac{r}{b} = \dfrac{{q.b + r}}{b}$
Ví dụ:
$1\dfrac{3}{4} = \dfrac{{1.4 + 3}}{4} = \dfrac{7}{4}$
III. Viết phân số dưới dạng hỗn số
Viết phân số đã cho dưới dạng $\dfrac{{q.b + r}}{b}, (r<b)$ và thu gọn được:
$\dfrac{{q.b + r}}{b}=\dfrac {q.b}{b}+\dfrac{r}{b}=q+\dfrac{r}{b}=q\dfrac{r}{b} $
IV. Cộng, trừ hỗn số
1) Khi cộng hai hỗn số ta có thể viết chúng dưới dạng phân số rồi thực hiện phép cộng phân số. Ta cũng có thể cộng phần nguyên với nhau, cộng phần phân số với nhau khi hai hỗn số đều dương.
Ví dụ 1:
$2\dfrac{1}{2} + 3\dfrac{1}{4}$$ = \left( {2 + 3} \right) + \left( {\dfrac{1}{2} + \dfrac{1}{4}} \right)$$ = 5 + \dfrac{3}{4} = 5\dfrac{3}{4}$
2) Khi trừ hai hỗn số, ta có thể viết chúng dưới dạng phân số rồi thực hiện phép trừ phân số. Ta cũng có thể lấy phần nguyên của số bị trừ trừ phần nguyên của số trừ, phần phân số của số bị trừ trừ phân phân số của số trừ, rồi cộng kết quả với nhau (khi hai hỗn số đều dương, số bị trừ lớn hơn hoặc bằng số trừ).
Ví dụ 2:
$3\dfrac{1}{2}\; - 2\dfrac{1}{4}$$ = \left( {3 - 2} \right) + \left( {\dfrac{1}{2} - \dfrac{1}{4}} \right)$$ = 1 + \dfrac{1}{4}$$ = 1\dfrac{1}{4}$
3) Khi hai hỗn số đều dương, số bị trừ lớn hơn hoặc bằng số trừ nhưng phân phân số của số bị trừ nhỏ hơn phần phân số của số trừ, ta phải rút một đơn vị ở phần nguyên của số bị trừ để thêm vào phần phân số, sau đó tiếp tục trừ như trên.
Ví dụ 3:
$8\dfrac{1}{5} - 3\dfrac{1}{2} = 8\dfrac{2}{{10}} - 3\dfrac{5}{{10}}$$ = 7\dfrac{{12}}{{10}} - 3\dfrac{5}{{10}}$$ = 4\dfrac{7}{{10}}.$
Chú ý: Ta có thể đổi hỗn số ra phân số rồi thực hiện phép cộng trừ phân số.
V. Nhân, chia hỗn số
-Thực hiện phép cộng hoặc phép trừ hỗn số bằng cách viết hỗn số dưới dạng phân số rồi làm phép cộng hoặc phép chia phân số.
- Khi nhân hoặc chia một hỗn số với một số nguyên, ta có thể viết hỗn số dưới dạng một tổng của một số nguyên và một phân số.
Ví dụ:
$2\dfrac{1}{3}.2 = \left( {2 + \dfrac{1}{3}} \right).2 = 2.2 + \dfrac{1}{3}.2 = 4 + \dfrac{2}{3} = 4\dfrac{2}{3}$
$6\dfrac{2}{5}:2 = \left( {6 + \dfrac{2}{5}} \right):2 = 6:2 + \dfrac{2}{5}:2 = 3 + \dfrac{1}{5} = 3\dfrac{1}{5}.$
VI. So sánh, sắp xếp các hỗn số
+ Hỗn số nào có phần nguyên lớn hơn thì hỗn số đó lớn hơn.
+ Nếu hai phần nguyên bằng nhau thì hỗn số nào có phần phân số lớn hơn thì phân số đó lớn hơn.
Từ khóa » Cách Trừ Hỗn Số Lớp 6
-
Hỗn Số Là Gì? Cách Cộng Trừ Hỗn Số? Cách Tính Nhanh Hỗn Số?
-
Cách Cộng Trừ, Nhân Chia Hỗn Số - Abcdonline
-
Cách Cộng Trừ, Nhân Chia Hỗn Số - Học Toán 123
-
Phép Cộng Trừ Hỗn Số | Toán Lớp 5 , 6 - YouTube
-
Phép Trừ Hỗn Số | Toán Lớp 5, 6 - YouTube
-
2 Phương Pháp TRỪ HỖN SỐ Trong Chương Trình Toán Lớp 5
-
Cách Tính Hỗn Số Hay Nhất - TopLoigiai
-
Hỗn Số Là Gì? Cách Cộng Trừ Hỗn Số? Cấu Tạo Của Hỗn Số?
-
Các Dạng Bài Tập Phần Hỗn Số. Số Thập Phân. Phần Trăm - Toán Lớp 6
-
Hỗn Số. Số Thập Phân. Phần Trăm - Toán Lớp 6 - Luyện Thi 123
-
Giải Toán 6 Bài 13. Hỗn Số. Số Thập Phân. Phần Trăm
-
50 Bài Tập Phép Cộng, Trừ, Nhân, Chia Hỗn Số Lớp 5 Và Cách Giải
-
Hỗn Số Là Gì? Các Tính Cộng Trừ Hỗ Số, Cách đổi Hỗn Số Ra Phân Số
-
Các Dạng Toán Về So Sánh Phân Số. Hỗn Số Dương - Kết Nối Tri Thức