Lý Thuyết Một Số Phương Trình Lượng Giác Thường Gặp - Blog
Có thể bạn quan tâm
I. PHƯƠNG TRÌNH BẬC NHẤT ĐỐI VỚI MỘT HÀM SỐ LƯỢNG GIÁC
1. Định nghĩa
Phương trình bậc nhất đối với một hàm số lượng giác là phương trình có dạng:
\(at + b = 0\,\,\,\,\,\,\left( 1 \right)\)
Trong đó, \(a,b\) là các hằng số \(\left( {a \ne 0} \right)\) và \(t\) là một trong các hàm số lượng giác.
2. Cách giải
Chia cả hai vế cho \(a\) ta được được \(\left( 1 \right)\) về phương trình lượng giác cơ bản.
Ví dụ:
\(\begin{array}{l}2\cos x - \sqrt 3 = 0\\ \Leftrightarrow 2\cos x = \sqrt 3 \\ \Leftrightarrow \cos x = \frac{{\sqrt 3 }}{2} = \cos \frac{\pi }{6}\\ \Leftrightarrow x = \pm \frac{\pi }{6} + k2\pi \end{array}\)
3. Phương trình đưa về phương trình bậc nhất đối với một hàm số lượng giác
Ví dụ:
\(\begin{array}{l}5\sin x - \sin 2x = 0\\ \Leftrightarrow 5\sin x - 2\sin x\cos x = 0\\ \Leftrightarrow \sin x\left( {5 - 2\cos x} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}\sin x = 0\\5 - 2\cos x = 0\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}\sin x = 0\\\cos x = \frac{5}{2}\left( {VN\,vi\,\frac{5}{2} > 1} \right)\end{array} \right.\\ \Leftrightarrow x = k\pi ,k \in Z\end{array}\)
II. PHƯƠNG TRÌNH BẬC HAI ĐỐI VỚI MỘT HÀM SỐ LƯỢNG GIÁC
1. Định nghĩa
Phương trình bậc hai đối với một hàm số lượng giác là phương trình có dạng
\(a{t^2} + bt + c = 0\,\,\left( {a \ne 0} \right)\)
Trong đó \(a,b,c\) là các hằng số và \(t\) là một trong số các hàm số lượng giác.
2. Cách giải
- Đặt ẩn phụ và điều kiện cho ẩn (nếu có).
- Giải phương trình với ẩn phụ.
- Từ đó giải phương trình lượng giác cơ bản.
Ví dụ:
\({\tan ^2}x - \tan x - 2 = 0\,\,\left( 1 \right)\)
Đặt \(t = \tan x\) thì (1) là:
\({t^2} - t - 2 = 0 \Leftrightarrow \left[ \begin{array}{l}t = - 1\\t = 2\end{array} \right.\)
\(\begin{array}{l} \Rightarrow \left[ \begin{array}{l}\tan x = - 1\\\tan x = 2\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x = - \frac{\pi }{4} + k\pi \\x = \arctan 2 + k\pi \end{array} \right.,k \in Z\end{array}\)
III. PHƯƠNG TRÌNH BẬC NHẤT ĐỐI VỚI \(\sin x\) VÀ \(\cos x\)
Xét phương trình \(a\sin x + b\cos x = c\)
+) Chia hai vế phương trình cho \(\sqrt {{a^2} + {b^2}} \)
+) Gọi \(α\) là góc lượng giác tạo bởi chiều dương của trục hoành với vecto \(\overrightarrow {OM} = (a;b)\) thì phương trình trở thành một phương trình đã biết cách giải:
\(\sin (x + \alpha ) = {c \over {\sqrt {{a^2} + {b^2}} }}\)
Chú ý : Để phương trình \(\sin (x + a) = {{{c^2}} \over {\sqrt {{a^2} + {b^2}} }}\) có nghiệm, điều kiện cần và đủ là
\(\left| {{{{c^2}} \over {\sqrt {{a^2} + {b^2}} }}} \right| \le 1\)
\(\Leftrightarrow \left| c \right| \le \sqrt {{a^2} + {b^2}} \)
\(\Leftrightarrow {c^2} \le {a^2} + {b^2}\)
Đó cũng là điều kiện cần và đủ để phương trình \(a\sin x + b\cos x = c\) có nghiệm.
HocTot.Nam.Name.Vn
Từ khóa » Tóm Tắt Lý Thuyết Phương Trình Lượng Giác
-
Lý Thuyết Phương Trình Lượng Giác Cơ Bản | SGK Toán Lớp 11
-
Lý Thuyết Phương Trình Lượng Giác Cơ Bản Hay, Chi Tiết Nhất
-
Tóm Tắt Lý Thuyết Phương Trình Lượng Giác
-
Lý Thuyết Phương Trình Lượng Giác Cơ Bản Toán 11
-
Lý Thuyết Phương Trình Lượng Giác Cơ Bản Hay, Chi Tiết Nhất
-
Phương Trình Lượng Giác Cơ Bản: Lý Thuyết, Cách Giải, Bài Tập
-
Tóm Tắt Công Thức Lượng Giác Và Phương Trình Lượng Giác 11 - 123doc
-
Toán 11 Bài 2: Phương Trình Lượng Giác Cơ Bản
-
Lý Thuyết Và Bài Tập Hàm Số Lượng Giác Và Phương Trình Lượng Giác
-
1. TÓM TẮT LÝ THUYẾT CHƯƠNG LƯỢNG GIÁml
-
[PDF] PHƯƠNG TRÌNH LƯỢNG GIÁC - Giáo Viên Đặng Trung Hiếu
-
Lý Thuyết Về Phương Trình Lượng Giác
-
Phương Trình Lượng Giác Cơ Bản
-
Phương Trình Lượng Giác Cơ Bản Lớp 11 Lý Thuyết