Lý Thuyết Thể Tích Khối Hộp, Khối Lăng Trụ Toán 12

Mục Lục - Lý thuyết Toán 12

    CHƯƠNG 1: ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT VÀ VẼ ĐỒ THỊ HÀM SỐ

    • Bài 1: Sự đồng biến, nghịch biến của hàm số
    • Bài 2: Cực trị của hàm số
    • Bài 3: Phương pháp giải một số bài toán cực trị có tham số đối với một số hàm số cơ bản
    • Bài 4: Giá trị lớn nhất và giá trị nhỏ nhất của hàm số
    • Bài 5: Đồ thị hàm số và phép tịnh tiến hệ tọa độ
    • Bài 6: Đường tiệm cận của đồ thị hàm số và luyện tập
    • Bài 7: Khảo sát sự biến thiên và vẽ đồ thị của hàm đa thức bậc ba
    • Bài 8: Khảo sát sự biến thiên và vẽ đồ thị của hàm đa thức bậc bốn trùng phương
    • Bài 9: Phương pháp giải một số bài toán liên quan đến khảo sát hàm số bậc ba, bậc bốn trùng phương
    • Bài 10: Khảo sát sự biến thiên và vẽ đồ thị của một số hàm phân thức hữu tỷ
    • Bài 11: Phương pháp giải một số bài toán về hàm phân thức có tham số
    • Bài 12: Phương pháp giải các bài toán tương giao đồ thị
    • Bài 13: Phương pháp giải các bài toán tiếp tuyến với đồ thị và sự tiếp xúc của hai đường cong
    • Bài 14: Ôn tập chương I

    CHƯƠNG 2: HÀM SỐ LŨY THỪA, HÀM SỐ MŨ VÀ HÀM SỐ LÔGARIT

    • Bài 1: Lũy thừa với số mũ hữu tỉ - Định nghĩa và tính chất
    • Bài 2: Phương pháp giải các bài toán liên quan đến lũy thừa với số mũ hữu tỉ
    • Bài 3: Lũy thừa với số mũ thực
    • Bài 4: Hàm số lũy thừa
    • Bài 5: Các công thức cần nhớ cho bài toán lãi kép
    • Bài 6: Logarit - Định nghĩa và tính chất
    • Bài 7: Phương pháp giải các bài toán về logarit
    • Bài 8: Số e và logarit tự nhiên
    • Bài 9: Hàm số mũ
    • Bài 10: Hàm số logarit
    • Bài 11: Phương trình mũ và một số phương pháp giải
    • Bài 12: Phương trình logarit và một số phương pháp giải
    • Bài 13: Hệ phương trình mũ và logarit
    • Bài 14: Bất phương trình mũ
    • Bài 15: Bất phương trình logarit
    • Bài 16: Ôn tập chương 2

    CHƯƠNG 3: NGUYÊN HÀM, TÍCH PHÂN VÀ ỨNG DỤNG

    • Bài 1: Nguyên hàm
    • Bài 2: Sử dụng phương pháp đổi biến để tìm nguyên hàm
    • Bài 3: Sử dụng phương pháp nguyên hàm từng phần để tìm nguyên hàm
    • Bài 4: Tích phân - Khái niệm và tính chất
    • Bài 5: Tích phân các hàm số cơ bản
    • Bài 6: Sử dụng phương pháp đổi biến số để tính tích phân
    • Bài 7: Sử dụng phương pháp tích phân từng phần để tính tích phân
    • Bài 8: Ứng dụng tích phân để tính diện tích hình phẳng
    • Bài 9: Ứng dụng tích phân để tính thể tích vật thể
    • Bài 10: Ôn tập chương III

    CHƯƠNG 4: SỐ PHỨC

    • Bài 1: Số phức
    • Bài 2: Căn bậc hai của số phức và phương trình bậc hai
    • Bài 3: Phương pháp giải một số bài toán liên quan đến điểm biểu diễn số phức thỏa mãn điều kiện cho trước
    • Bài 4: Phương pháp giải các bài toán tìm min, max liên quan đến số phức
    • Bài 5: Dạng lượng giác của số phức

    CHƯƠNG 5: KHỐI ĐA DIỆN VÀ THỂ TÍCH CỦA CHÚNG

    • Bài 1: Khái niệm về khối đa diện
    • Bài 2: Phép đối xứng qua mặt phẳng và sự bằng nhau của các khối đa diện
    • Bài 3: Khối đa diện đều. Phép vị tự
    • Bài 4: Thể tích của khối chóp
    • Bài 5: Thể tích khối hộp, khối lăng trụ
    • Bài 6: Ôn tập chương Khối đa diện và thể tích

    CHƯƠNG 6: MẶT CẦU, MẶT TRỤ, MẶT NÓN

    • Bài 1: Khái niệm về mặt tròn xoay – Mặt nón, mặt trụ
    • Bài 2: Diện tích hình nón, thể tích khối nón
    • Bài 3: Diện tích hình trụ, thể tích khối trụ
    • Bài 4: Lý thuyết mặt cầu, khối cầu
    • Bài 5: Mặt cầu ngoại tiếp, nội tiếp khối đa diện
    • Bài 6: Ôn tập chương VI

    CHƯƠNG 7: PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN

    • Bài 1: Hệ tọa độ trong không gian – Tọa độ điểm
    • Bài 2: Tọa độ véc tơ
    • Bài 3: Tích có hướng và ứng dụng
    • Bài 4: Phương pháp giải các bài toán về tọa độ điểm và véc tơ
    • Bài 5: Phương trình mặt phẳng
    • Bài 6: Phương pháp giải các bài toán liên quan đến phương trình mặt phẳng
    • Bài 7: Phương trình đường thẳng
    • Bài 8: Phương pháp giải các bài toán về mối quan hệ giữa hai đường thẳng
    • Bài 9: Phương pháp giải các bài toán về mặt phẳng và đường thẳng
    • Bài 10: Phương trình mặt cầu
    • Bài 11: Phương pháp giải các bài toán về mặt cầu và mặt phẳng
    • Bài 12: Phương pháp giải các bài toán về mặt cầu và đường thẳng
  1. Trang chủ
  2. Lý thuyết toán học
  3. Lý thuyết Toán 12
  4. CHƯƠNG 5: KHỐI ĐA DIỆN VÀ THỂ TÍCH CỦA CHÚNG
  5. Thể tích khối hộp, khối lăng trụ
Thể tích khối hộp, khối lăng trụ Trang trước Mục Lục Trang sau

1. Kiến thức cần nhớ

Thể tích khối hộp, khối lăng trụ

- Thể tích khối hộp chữ nhật: \(V = abc\) với \(a,b,c\) là ba kích thước của hình hộp chữ nhật.

- Thể tích khối lập phương cạnh \(a:V = {a^3}\).

- Thể tích khối lăng trụ: \(V = S.h\) với \(S\) là diện tích đáy, \(h\) là chiều cao.

2. Một số dạng toán thường gặp

Dạng 1: Tính thể tích khối lăng trụ xiên

Phương pháp chung:

- Bước 1: Xác định đường cao của lăng trụ và tính độ dài đường cao \(h\).

- Bước 2: Tính diện tích đáy \(S\).

- Bước 3: Tính thể tích khối lăng trụ bởi công thức \(V = Sh\).

Dạng 2: Tính thể tích khối lăng trụ đứng

Phương pháp:

- Bước 1: Xác định diện tích đáy của lăng trụ.

- Bước 2: Xác định chiều cao của lăng trụ (chính là độ dài cạnh bên của lăng trụ).

- Bước 3: Tính thể tích của lăng trụ dựa vào công thức \(V = Sh\).

Trang trước Mục Lục Trang sau

Có thể bạn quan tâm:

  • Ôn tập chương Khối đa diện và thể tích
  • Mặt cầu ngoại tiếp, nội tiếp khối đa diện
  • Tích có hướng và ứng dụng
  • Lý thuyết Toán 12
  • Hình cầu. Diện tích mặt cầu và thể tích hình cầu

Tài liệu

Toán 12: Các dạng toán thể tích khối đa diện thường gặp trong kỳ thi THPTQG

Toán 12: Các dạng toán thể tích khối đa diện thường gặp trong kỳ thi THPTQG

Toán 12 - Bài tập tỷ số thể tích khối đa diện - Lê Bá Bảo

Toán 12 - Bài tập tỷ số thể tích khối đa diện - Lê Bá Bảo

Toán 12 - Một số công thức giải nhanh phần thể tích khối chóp - Nguyễn Chiến

Toán 12 - Một số công thức giải nhanh phần thể tích khối chóp - Nguyễn Chiến

Toán 12 - Đề cương HKI THPT chuyên Hà Nội - Amsterdam (2020-2021)

Toán 12 - Đề cương HKI THPT chuyên Hà Nội - Amsterdam (2020-2021)

Toán 12 - Thể tích cơ bản - Cạnh bên vuông góc với đáy

Toán 12 - Thể tích cơ bản - Cạnh bên vuông góc với đáy Top

Từ khóa » S Khối Hộp