Lý Thuyết Về Căn Bậc Ba. | SGK Toán Lớp 9
Có thể bạn quan tâm
1. Định nghĩa
+ Căn bậc ba của một số a là số x sao cho \(x^3=a\)
+ Căn bậc ba của số a được kí hiệu là \(\root 3 \of a \)
Như vậy \({\left( {\root 3 \of a } \right)^3} = a\)
Mọi số thực đều có căn bậc ba.
2. Các tính chất
a) \(a < b \Leftrightarrow \sqrt[3]{a} < \sqrt[3]{b}\)
b) \(\root 3 \of {ab} = \root 3 \of a .\root 3 \of b \)
c) Với b ≠ 0, ta có \(\displaystyle \root 3 \of {{a \over b}} = {{\root 3 \of a } \over {\root 3 \of b }}\)
3. Áp dụng
Từ các tính chất trên, ta cũng có các quy tắc đưa thừa số vào trong, ra ngoài dấu căn bậc ba, quy tắc khử mẫu của biểu thức lấy căn bậc ba và quy tắc trục căn bậc ba ở mẫu:
a) \(a\root 3 \of b = \root 3 \of {{a^3}b} \)
b) \(\displaystyle \root 3 \of {{a \over b}} = {{\root 3 \of {a{b^2}} } \over b}\)
c) Áp dụng hằng đẳng thức \(\left( {A \pm B} \right)\left( {{A^2} \mp AB + {B^2}} \right) = {A^3} \pm {B^3}\), ta có:
\(\eqalign{ & \left( {\root 3 \of a \pm \root 3 \of b } \right)\left( {\root 3 \of {{a^2}} \mp \root 3 \of {ab} + \root 3 \of {{b^2}} } \right) \cr & = {\left( {\root 3 \of a } \right)^3} \pm {\left( {\root 3 \of b } \right)^3} = a \pm b \cr} \)
Do đó
\(\eqalign{ & {M \over {\root 3 \of a \pm \root 3 \of b }} \cr & = {{M\left( {\root 3 \of {{a^2}} \mp \root 3 \of {ab} + \root 3 \of {{b^2}} } \right)} \over {\left( {\root 3 \of a \pm \root 3 \of b } \right)\left( {\root 3 \of {{a^2}} \mp \root 3 \of {ab} + \root 3 \of {{b^2}} } \right)}} \cr & = {{M\left( {\root 3 \of {{a^2}} \mp \root 3 \of {ab} + \root 3 \of {{b^2}} } \right)} \over {a \pm b}} \cr} \)
4. Các dạng toán cơ bản
Dạng 1: Tính giá trị biểu thức
Sử dụng: \({\left( {\sqrt[3]{a}} \right)^3} = \sqrt[3]{{{a^3}}} = a\)
Ví dụ: \(\sqrt[3]{{64}} = \sqrt[3]{{{4^3}}} = 4\)
Dạng 2: So sánh các căn bậc ba
Sử dụng: \(a < b \Leftrightarrow \sqrt[3]{a} < \sqrt[3]{b}\)
Ví dụ: So sánh 3 và \(\sqrt[3]{{26}}\)
Ta có: \(3 = \sqrt[3]{{27}}\) mà \(26<27\) nên \(\sqrt[3]{{26}} < \sqrt[3]{{27}} \Leftrightarrow \sqrt[3]{{26}} < 3\)
Dạng 3: Giải phương trình chứa căn bậc ba
Sử dụng: \(\sqrt[3]{A} = B \Leftrightarrow A = {B^3}\)
Ví dụ:
\(\begin{array}{l}\sqrt[3]{{x - 1}} = 2\\ \Leftrightarrow x - 1 = {2^3}\\ \Leftrightarrow x - 1 = 8\\ \Leftrightarrow x = 9\end{array}\)

Loigiaihay.com
Từ khóa » Số 3a Là Căn Bậc Ba Của
-
Lý Thuyết Về Căn Bậc Ba: Từ Các Tính Chất Trên, Ta Cũng Có Các Quy Tắc ...
-
Căn Bậc Ba Là Gì ? Lý Thuyết, điều Kiện, Công Thức Tính Căn Bậc Ba ...
-
Lý Thuyết Về Căn Bậc Ba. - Môn Toán - Tìm đáp án, Giải Bài Tập, để Học
-
Căn Bậc Ba - Lý Thuyết Toán 9
-
Bài 9: Căn Bậc Ba - Hoc24
-
Rút Gọn ( Căn Bậc Ba Của A - Mathway
-
Lý Thuyết Căn Bậc Ba Toán 9
-
Lý Thuyết, Các Dạng Bài Tập Căn Bậc Ba Cực Hay, Có đáp án
-
Căn Bậc 3 Lớp 9 – Giải Toán 9 Nhanh Nhất Cùng Toppy
-
Tính Căn Bậc 3 Online | - Giải Toán Nhanh
-
Căn Bậc Ba
-
Lý Thuyết Về Căn Bậc Ba. - Toán Lớp 9
-
Bài 9: Căn Bậc Ba - LỚP 9