Lý Thuyết Về đại Lượng Tỷ Lệ Thuận | SGK Toán Lớp 7
Có thể bạn quan tâm
I. Các kiến thức cần nhớ
Định nghĩa đại lượng tỉ lệ thuận
+ Nếu đại lượng $y$ liên hệ với đại lượng $x$ theo công thức \(y = kx\) (với $k$ là hằng số khác $0$ ) thì ta nói $y$ tỉ lệ thuận với $x$ theo hệ số tỉ lệ $k.$
+ Khi đại lượng $y$ tỉ lệ thuận với đại lượng $x$ theo hệ số tỉ lệ $k$ (khác $0$ ) thì $x$ cũng tỉ lệ thuận với $y$ theo hệ số tỉ lệ \(\dfrac{1}{k}\) và ta nói hai đại lượng đó tỉ lệ thuận với nhau.
Ví dụ: Nếu \(y = 3x\) thì $y$ tỉ lệ thuận với $x$ theo hệ số $3$, hay $x$ tỉ lệ thuận với $y$ theo hệ số \(\dfrac{1}{3}.\)
Tính chất:
* Nếu hai đại lượng tỉ lệ thuận với nhau thì:
+ Tỉ số hai giá trị tương ứng của chúng luôn luôn không đổi.
+ Tỉ số hai giá trị bất kì của đại lượng này bằng tỉ số hai giá trị tương ứng của đại lượng kia.
* Nếu hai đại lượng $y$ và $x$ tỉ lệ thuận với nhau theo tỉ số \(k\) thì: \(y = kx;\)
\(\dfrac{{{y_1}}}{{{x_1}}} = \dfrac{{{y_2}}}{{{x_2}}} = \dfrac{{{y_3}}}{{{x_3}}} = ... = k\) ; \(\dfrac{{{x_1}}}{{{x_2}}} = \dfrac{{{y_1}}}{{{y_2}}};\dfrac{{{x_1}}}{{{x_3}}} = \dfrac{{{y_1}}}{{{y_3}}};...\)
II. Các dạng toán thường gặp
Dạng 1: Lập bảng giá trị tương ứng của hai đại lượng tỉ lệ thuận
Phương pháp:
+ Xác định hệ số tỉ lệ \(k.\)
+ Dùng công thức \(y = kx\) để tìm các giá trị tương ứng của \(x\) và \(y.\)
Dạng 2: Xét tương quan tỉ lệ thuận giữa hai đại lượng khi biết bảng giá trị tương ứng của chúng
Phương pháp:
Xét xem tất cả các thương của các giá trị tương ứng của hai đại lượng xem có bằng nhau không?
Nếu bằng nhau thì hai đại lượng tỉ lệ thuận.
Nếu không bằng nhau thì hai đại lượng không tỉ lệ thuận.
Dạng 3: Bài toán về đại lượng tỉ lệ thuận
Phương pháp:
+ Xác định tương quan tỉ lệ thuận giữa hai đại lượng
+ Áp dụng tính chất về tỉ số các giá trị của hai đại lượng tỉ lệ thuận.
Dạng 4: Chia một số thành những phần tỉ lệ thuận với các số cho trước
Phương pháp:
Giả sử chia số \(P\) thành ba phần \(x,\,y,\,z\) tỉ lệ với các số \(a,b,c\), ta làm như sau:
\(\dfrac{x}{a} = \dfrac{y}{b} = \dfrac{z}{c} = \dfrac{{x + y + z}}{{a + b + c}} = \dfrac{P}{{a + b + c}}\)
Từ đó \(x = \dfrac{P}{{a + b + c}}.a;\,y = \dfrac{P}{{a + b + c}}.b\); \(z = \dfrac{P}{{a + b + c}}.c\).
Từ khóa » Hệ Số Tỉ Lệ Là Gì Toán 7
-
[CHUẨN NHẤT] Hệ Số Tỉ Lệ Là Gì? - Top Lời Giải
-
Hệ Số Tỉ Lệ Là Gì? Khái Niệm Và Cách Tìm Hệ Số Tỉ Lệ Chính Xác Nhất - VOH
-
Lý Thuyết Đại Lượng Tỉ Tệ Thuận Hay, Chi Tiết | Toán Lớp 7
-
Cho Em Hỏi Khái Niệm Và ý Nghĩa Hệ Số Tỉ Lệ Là Gì ạ Em Học Bài Cứ ...
-
Đại Lượng Tỉ Lệ Thuận: Định Nghĩa, Tính Chất, Dạng Toán & Phương ...
-
Tìm Hệ Số Tỉ Lệ K Biết Y Tỉ Lệ Thuận Với X Và Khi X=4 Thì Y=12 - HOC247
-
Công Thức, Tính Chất Của đại Lượng Tỉ Lệ Nghịch - Đại Số 7 - Toán Lớp 7
-
Công Thức, Tính Chất Của đại Lượng Tỉ Lệ Thuận - Đại Số 7 - Toán Lớp 7
-
Tỉ Lệ Thuận – Wikipedia Tiếng Việt
-
Giải Sách Bài Tập Toán 7 Bài 1: Đại Lượng Tỉ Tệ Thuận
-
Sách Giải Bài Tập Toán Lớp 7 Bài 3: Đại Lượng Tỉ Lệ Nghịch
-
Các Dạng Toán Về đại Lượng Tỉ Lệ Thuận, Tỉ Lệ Nghịch Và Bài Tập
-
Câu 1 Trang 65 SBT Môn Toán 7 Tập 1:Tìm Hệ Số Tỉ Lệ Của Y đối Với X
-
Đại Lượng Tỉ Lệ Thuận, Tỉ Lệ Nghịch - Abcdonline