Lý Thuyết Vị Trí Tương đối Giữa đường Thẳng Và đường Tròn Toán 9
Có thể bạn quan tâm
- Xét Vị Trí Tương đối Của Hai đường Thẳng
- Xét Vị Trí Tương đối Của Hai đường Thẳng D1
- Xét Vị Trí Tương đối Của Hai đường Thẳng D1 3x - 2y - 6 = 0 Và D2 6 X - 2y - 8 = 0
- Xét Vị Trí Tương đối Của Hai đường Thẳng D1 X - 2y + 1 = 0 D 2 - 3 X + 6 Y - 10 = 0
- Xét Vị Trí Tương đối Của Hai đường Thẳng D1 X - 2y + 1 = 0 Và D2 - 3 X + 6 Y - 10 = 0
- Trang chủ
- Lý thuyết toán học
- Toán 9
- CHƯƠNG 6: ĐƯỜNG TRÒN
- Vị trí tương đối giữa đường thẳng và đường tròn
1. Các kiến thức cần nhớ
Vị trí tương đối của đường thẳng và đường tròn
Cho đường tròn $\left( {O;R} \right)$ và một đường thẳng $\Delta $ bất kì. Gọi $d$ là khoảng cách từ tâm $O$ của đường tròn đến đường thẳng đó.
Trường hợp 1: Đường thẳng $\Delta $ và đường tròn $\left( {O;R} \right)$ cắt nhau.
Khi đó, đường thẳng và đường tròn có hai điểm chung và khoảng cách $d = OH < R$
Trường hợp 2: Đường thẳng $\Delta $ và đường tròn $\left( {O;R} \right)$ tiếp xúc với nhau.
Khi đó, đường thẳng và đường tròn có một điểm chung và khoảng cách $d = OB = R$.
Đường thẳng $\Delta $ được gọi là tiếp tuyến của đường tròn và điểm $B$ là tiếp điểm.
Trường hợp 3: Đường thẳng $\Delta $ và đường tròn $\left( {O;R} \right)$ không giao nhau.
Khi đó, đường thẳng và đường tròn không có điểm chung và khoảng cách $d = OH > R$
Từ đó ta có bảng vị trí tương đối của đường thẳng và đường tròn.
Vị trí tương đối của đường thẳng và đường tròn | Số điểm chung | Hệ thức giữa $d$ và $R$ |
Đường thẳng và đường tròn cắt nhau | $2$ | $d < R$ |
Đường thẳng và đường tròn tiếp xúc nhau | $1$ | $d = R$ |
Đường thẳng và đường tròn không giao nhau | $0$ | $d > R$ |
2. Các dạng toán thường gặp
Dạng 1: Xác định vị trí tương đối của đường thẳng và đường tròn
Phương pháp:
Dựa vào bảng vị trí tương đối :
Vị trí tương đối của đường thẳng và đường tròn | Số điểm chung | Hệ thức giữa $d$ và $R$ |
Đường thẳng và đường tròn cắt nhau | $2$ | $d < R$ |
Đường thẳng và đường tròn tiếp xúc nhau | $1$ | $d = R$ |
Đường thẳng và đường tròn không giao nhau | $0$ | $d > R$ |
Dạng 2: Bài toán độ dài dựa vào tính chất tiếp tuyến.
Phương pháp:
Sử dụng tính chất tiếp tuyến và định lý Pytago
Dạng 3: Tìm tập hợp điểm thỏa mãn điều kiện cho trước.
Phương pháp:
Sử dụng tính chất đường phân giác và các đường thẳng song song cách đều để tìm tập hợp điểm.
Trang trước Mục Lục Trang sauCó thể bạn quan tâm:
- Ôn tập chương 6: ĐƯỜNG TRÒN
- Lý thuyết mặt cầu, khối cầu
- Ôn tập chương VI
- Đường thẳng song song với mặt phẳng
- Hai đường thẳng song song
Tài liệu
Sách giáo khoa Toán 6 tập 1 - Kết Nối Tri Thức Với Cuộc Sống
Tạp chí toán học và tuổi trẻ số 489 ra tháng 3 năm 2018
Tạp chí toán học và tuổi trẻ số 493 - tháng 7 2018
Ví dụ và bài tập phương trình, bất phương trình và hệ phương trình – Trần Văn Toàn
Toán 11: Các dạng toán quy tắc đếm, hoán vị, chỉnh hợp, tổ hợp thường gặp
Từ khóa » Xét Vị Trí Tương đối Của đường Thẳng Và đường Tròn
-
Vị Trí Tương đối Của Hai đường Tròn, Của đường Thẳng Và đường Tròn
-
Vị Trí Tương đối Của đường Thẳng Và đường Tròn
-
Vị Trí Tương đối Của đường Thẳng Và đường Tròn
-
Vị Trí Tương đối Của Hai đường Tròn, Của đường Thẳng Và đường Tròn
-
Vị Trí Tương đối Của đường Thẳng Và đường Tròn – Học Hình Toán 9
-
Vị Trí Tương đối Của đường Thẳng Và đường Tròn - Toán 10 - Học Tốt
-
Lý Thuyết Vị Trí Tương đối Của đường Thẳng Với đường Tròn Toán 10
-
Vị Trí Tương đối Của Hai đường Tròn, Của đường ...
-
Dạng 3: Vị Trí Tương đối Của điểm, đường Thẳng Và đường Tròn. | 7scv
-
Vị Trí Tương đối Của đường Thẳng Và đường Tròn
-
Xác định Vị Trí Tương đối Của đường Thẳng Và đường Tròn Toán Lớp 9
-
Hình Học 9 Bài 4: Vị Trí Tương đối Của đường Thẳng Và đường Tròn
-
Giải Toán 9 Bài 4. Vi Trí Tương đối Của đường Thẳng Và đường Tròn + ...
-
Bài 4: Vị Trí Tương đối Của đường Thẳng Và đường Tròn. Tiếp Tuyến ...