Vị Trí Tương đối Của Hai đường Tròn, Của đường ...
Có thể bạn quan tâm
- Xét Vị Trí Tương đối Của Hai đường Thẳng
- Xét Vị Trí Tương đối Của Hai đường Thẳng D1
- Xét Vị Trí Tương đối Của Hai đường Thẳng D1 3x - 2y - 6 = 0 Và D2 6 X - 2y - 8 = 0
- Xét Vị Trí Tương đối Của Hai đường Thẳng D1 X - 2y + 1 = 0 D 2 - 3 X + 6 Y - 10 = 0
- Xét Vị Trí Tương đối Của Hai đường Thẳng D1 X - 2y + 1 = 0 Và D2 - 3 X + 6 Y - 10 = 0
Vị trí tương đối của hai đường tròn, của đường thẳng và đường tròn
A. Phương pháp giải
+ Vị trí tương đối của hai đường tròn :
Cho hai đường tròn (C1): tâm I1; bán kính R1 và đường tròn (C2): Tâm I2 bán kính R2.
- Nếu I1I2 > R1 + R2 thì hai đường tròn không có điểm chung .
- Nếu I1I2 = R1 + R2 thì hai đường tròn tiếp xúc ngoài
- Nếu I1I2 = |R1 - R2 | thì hai đường tròn tiếp xúc trong.
- Nếu R1 - R2 < I1I2 < R1 + R2 thì hai đường tròn cắt nhau ( với R1 > R2) .
+ Vị trí tương đối của đường thẳng và đường tròn :
Cho đường thẳng d và đường tròn ( C): tâm I; bán kính R:
- Nếu d( I; d) = R thì đường thẳng tiếp xúc với đường tròn.
- Nếu d( I; d) > R thì đường thẳng và đường tròn không có điểm chung.
- Nếu d(I; d) < R thì đường thẳng và đường tròn cắt nhau tại hai điểm phân biệt.
B. Ví dụ minh họa
Ví dụ 1: Tọa độ giao điểm của đường tròn (C) : x2 + y2 - 2x - 2y + 1 = 0 và đường thẳng∆ :
A. (1 ; 2) và ( 2 ;1) B. (1 ;2) và ( ; ).
C. ( 2 ;5) D. (1 ; 0) và (0 ;1)
Hướng dẫn giải
Thế vào (C) ta có:
( 1 + t)2 + ( 2 + 2t)2 - 2( 1 + t) - 2( 2 + 2t) + 1 = 0
⇔ 1 + 2t + t2 + 4 + 8t + 4t2 - 2 - 2t - 4 – 4t + 1 = 0
⇔ 5t2 + 4t = 0
⇔
Chọn B
Ví dụ 2 : Xác định vị trí tương đối giữa 2 đường tròn (C1) : x2 + y2= 4 và đường tròn(C2) : (x + 10)2 + (y - 16)2 = 1.
A. Cắt nhau. B. Không cắt nhau. C. Tiếp xúc ngoài. D. Tiếp xúc trong.
Hướng dẫn giải
+ Đường tròn C1 có tâm và bán kính: I1 ( 0; 0) và R1 = 2
+ Đường tròn ( C2) có tâm và bán kính: I2( - 10; 16) và R2 = 1.
Khoảng cách giữa hai tâm I1I2 = = 2√89 > R1 + R2 .
Vậy ( C1) và ( C2) không có điểm chung.
Chọn B.
Ví dụ 3: Tìm giao điểm 2 đường tròn (C1) : x2 + y2 - 2 = 0 và (C2) : x2 + y2 - 2x = 0
A. (2 ; 0) và (0 ; 2) . B. (√2; 1) và (1; -√2) .
C. (1; - 1) và (1; 1) D. ( - 1 ; 0) và (0 ; - 1) .
Hướng dẫn giải
Giao điểm nếu có của hai đường tròn đã cho là nghiệm hệ phương trình:
Vậy hai giao điểm là A( 1; 1) và B( 1; - 1) .
Chọn C.
Ví dụ 4: Tìm tọa độ giao điểm của đường thẳng ∆ : y = x và đường tròn(C) : x2 + y2 - 2x = 0 .
A. ( 0; 0) B. (0; 0) và (1;1) . C. (2; 0) D. (1;1)
Hướng dẫn giải
Giao điểm nếu có của đường thẳng ∆ và đường tròn ( C) là nghiệm hệ phương trình:
Vậy đường thẳng cắt đường tròn tại hai điểm là A( 0; 0) và B (1; 1).
Chọn B
Ví dụ 5. Cho đường tròn ( C): x2 + y2 – 2x + 4y = 0. Đường thẳng d: 2x - y + m = 0. Tìm m để đường thẳng d cắt đường tròn ?
A. – 7 < m < 1 B. - 9 ≤ m ≤ 1 C. - 9 < m < 1 D. - 9 < m ≤ 1
Lời giải
+ Đường tròn ( C) có tâm I ( 1; - 2) và bán kính R = = √5
+ Khoảng cách từ tâm I đến đường thẳng d:
d(I; d) =
+ Để đường thẳng cắt đường tròn khi và chỉ khi đường thẳng và đường tròn tiếp xúc nhau hoặc cắt nhau nên:
d(I; d) ≤ R ⇔ ≤ √5
⇔ |4 + m| ≤ 5
⇔ - 5 ≤ 4 + m ≤ 5 ⇔ - 9 ≤ m ≤ 1
Vậy để đường thẳng d cắt đường tròn khi - 9 ≤ m ≤ 1
Chọn B.
Ví dụ 6 : Xác định vị trí tương đối giữa 2 đường tròn ( C1) : x2 + y2 = 4 và đường tròn( C2) : ( x - 3)2 + ( y - 4)2 = 25.
A. Không cắt nhau. B. Cắt nhau. C. Tiếp xúc ngoài. D. Tiếp xúc trong.
Hướng dẫn giải
Đường tròn ( C1) có tâm I1( 0; 0) và bán kính R1 = 2
Đường tròn ( C2) có tâm I2(3; 4) và bán kính R2 = 5
Khoảng cách hai tâm I1I2 = = 5.
Ta có: R2 - R1 = 3 < I1I2 = 5 < R2 + R1 = 7 nên 2 đường tròn trên cắt nhau.
Chọn B.
Ví dụ 7 : Đường tròn x2 + y2 - 2x - 2y - 23 = 0 cắt đường thẳng d : x + y - 2 = 0 theo một dây cung có độ dài bằng bao nhiêu?
A. 10 B. 8 C. 6 D. 3√2.
Hướng dẫn giải
+ Đường tròn ( C) có tâm I( 1; 1) và bán kính R= 5.
+ Khoảng cách từ tâm I đến đường thẳng d là:
d(I,d) = = 0
⇒ điểm I thuộc đườngthẳng d nên đường thẳng ( d) cắt đường tròn ( C) tại hai điểm M và N trong đó MN là đường kính của đường tròn.
⇒ MN = 2R = 10
Vậy đường thẳng d cắt đường tròn( C) theo một dây cung có độ dài là 10.
Chọn A.
Ví dụ 8: Cho đương tròn C1) có tâm I1(1; 0); bán kính R1 = 1 và đường tròn (C2) có tâm I2( - 5; 8), bán kính R2 = 11. Xác định vị trí tương đối của hai đường tròn (C1) và ( C2)?
A. Tiếp xúc ngoài B. Tiếp xúc trong
C. Cắt nhau D. Không cắt nhau
Lời giải
+ Khoảng cách hai tâm là: I1I2 = = 10
⇒ I1I2 = R2 - R1 = 10
⇒ Hai đương thẳng đã cho tiếp xúc trong.
Chọn B.
Ví dụ 9: Cho đương tròn C1) có tâm I1(2; - 3); bán kính R1 = 3 và đường tròn (C2) có tâm I2(4; 7), bán kính R2 = 6. Xác định vị trí tương đối của hai đường tròn (C1) và ( C2)?
A. Tiếp xúc ngoài B. Tiếp xúc trong
C. Cắt nhau D. Không cắt nhau
Lời giải
+ Khoảng cách hai tâm là: I1I2 = = √104
⇒ I1I2 > R2 + R1 = 9
⇒ Hai đường tròn đã cho không cắt nhau.
Chọn D.
Ví dụ 10. Tìm giao điểm 2 đường tròn ( C1) : x2 + y2 - 4 = 0 và(C2) : x2 + y2 - 4x - 4y + 4 = 0
A. (√2; √2) và (√2; - √2) B. (0 ; 2) và (0 ; - 2)
C. (2 ; 0) và (0 ;2) D. Đáp án khác
Hướng dẫn giải
Tọa độ giao điểm của 2đường tròn đã cho thỏa mãn hệ phương trình:
Vậy giao điểm A(0; 2) và B( 2; 0).
Chọn C.
Từ khóa » Xét Vị Trí Tương đối Của đường Thẳng Và đường Tròn
-
Vị Trí Tương đối Của Hai đường Tròn, Của đường Thẳng Và đường Tròn
-
Vị Trí Tương đối Của đường Thẳng Và đường Tròn
-
Vị Trí Tương đối Của đường Thẳng Và đường Tròn
-
Vị Trí Tương đối Của Hai đường Tròn, Của đường Thẳng Và đường Tròn
-
Vị Trí Tương đối Của đường Thẳng Và đường Tròn – Học Hình Toán 9
-
Vị Trí Tương đối Của đường Thẳng Và đường Tròn - Toán 10 - Học Tốt
-
Lý Thuyết Vị Trí Tương đối Của đường Thẳng Với đường Tròn Toán 10
-
Lý Thuyết Vị Trí Tương đối Giữa đường Thẳng Và đường Tròn Toán 9
-
Dạng 3: Vị Trí Tương đối Của điểm, đường Thẳng Và đường Tròn. | 7scv
-
Vị Trí Tương đối Của đường Thẳng Và đường Tròn
-
Xác định Vị Trí Tương đối Của đường Thẳng Và đường Tròn Toán Lớp 9
-
Hình Học 9 Bài 4: Vị Trí Tương đối Của đường Thẳng Và đường Tròn
-
Giải Toán 9 Bài 4. Vi Trí Tương đối Của đường Thẳng Và đường Tròn + ...
-
Bài 4: Vị Trí Tương đối Của đường Thẳng Và đường Tròn. Tiếp Tuyến ...