Ma Trận Khả Nghịch – Wikipedia Tiếng Việt

Bài viết này cần thêm chú thích nguồn gốc để kiểm chứng thông tin. Mời bạn giúp hoàn thiện bài viết này bằng cách bổ sung chú thích tới các nguồn đáng tin cậy. Các nội dung không có nguồn có thể bị nghi ngờ và xóa bỏ. (Tìm hiểu cách thức và thời điểm xóa thông báo này)

Trong đại số tuyến tính, một ma trận khả nghịch hay ma trận không suy biến là một ma trận vuông và có ma trận nghịch đảo trong phép nhân ma trận.

Định nghĩa

[sửa | sửa mã nguồn]

Ma trận đơn vị

[sửa | sửa mã nguồn]
  • Ma trận đơn vị cấp n trên vành có đơn vị V là ma trận vuông cấp n trong đó tất cả các phần tử trên đường chéo chính bằng đơn vị, tất cả các phần tử khác bằng không.
E n = [ 1 0 ⋅ ⋅ 0 0 1 ⋅ ⋅ 0 ⋅ ⋅ ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ 1 ] {\displaystyle E_{n}={\begin{bmatrix}1&0&\cdot &\cdot &0\\0&1&\cdot &\cdot &0\\\cdot &\cdot &\cdot &\cdot &\cdot \\0&0&\cdot &\cdot &1\end{bmatrix}}}
  • Tính chất của ma trận đơn vị: với mọi ma trân vuông cùng cấp AE=EA=A.

Ma trận khả nghịch và ma trận nghịch đảo của nó

[sửa | sửa mã nguồn]
  • Ma trận A vuông cấp n được gọi là khả nghịch trên V nếu tồn tại ma trận A' cùng cấp n sao cho A A' = A' A = E. Khi đó A' được gọi là ma trận nghịch đảo của ma trận A, ký hiệu là A−1.

Các tính chất

[sửa | sửa mã nguồn]
  1. Điều kiện cần và đủ để ma trận A vuông cấp n khả nghịch là định thức của A là phần tử khả nghịch trong vành V.
  2. Nếu A là ma trận trên một trường F thì A là khả nghịch khi và chỉ khi định thức của nó khác 0.
  3. Ma trận đơn vị là ma trận khả nghịch.
  4. Nếu A, B là các ma trận khả nghịch thì AB khả nghịch và ( A B ) − 1 = B − 1 A − 1 . {\displaystyle (AB)^{-1}=B^{-1}A^{-1}.}
  5. Tập hợp tất cả các ma trận vuông khả nghịch cấp n tạo thành một nhóm với phép nhân ma trận

Tìm ma trận nghịch đảo

[sửa | sửa mã nguồn]

Định thức con và phần bù đại số

[sửa | sửa mã nguồn]
  • Cho ma trận vuông A cấp n và phần tử aij. Định thức của ma trận cấp n-1 suy ra từ A bằng cách xóa đi dòng thứ i, cột thứ j được gọi là định thức con của A ứng với phần tử aij, ký hiệu là Mij.
  • Định thức con Mij với dấu bằng (-1)i+j được gọi là phần bù đại số của phần tử aij, ký hiệu là Aij.

Ví dụ: Cho ma trận

A = [ 1 1 1 0 2 1 0 0 3 ] {\displaystyle A={\begin{bmatrix}1&1&1\\0&2&1\\0&0&3\end{bmatrix}}} . Khi đó A 11 = ( − 1 ) 2 | 2 1 0 3 | = 6 {\displaystyle A_{11}=(-1)^{2}{\begin{vmatrix}2&1\\0&3\end{vmatrix}}=6} Tương tự A12=0; A13=0; A21=-3;A22=3;A23=0;A31=-1;A32=-1;A33=2;

Công thức tính ma trận nghịch đảo

[sửa | sửa mã nguồn]

Nếu định thức của ma trận A là khả nghịch thì ma trận nghịch đảo của A được tính bằng công thức:

A − 1 = 1 d e t ( A ) [ A 11 A 21 ⋅ A n 1 A 12 A 22 ⋅ A n 2 ⋅ ⋅ ⋅ ⋅ A 1 n A 2 n ⋅ A n n ] {\displaystyle A^{-1}={\frac {1}{det(A)}}{\begin{bmatrix}A_{11}&A_{21}&\cdot &A_{n1}\\A_{12}&A_{22}&\cdot &A_{n2}\\\cdot &\cdot &\cdot &\cdot \\A_{1n}&A_{2n}&\cdot &A_{nn}\end{bmatrix}}}

Các bước tìm ma trận nghịch đảo

[sửa | sửa mã nguồn]
  • Bước 1: Tính định thức của ma trận A Nếu det(A)=0 thì A không có ma trận nghịch đảo A − 1 {\displaystyle A^{-1}} Nếu det(A)≠0 thì A có ma trận nghịch đảo A − 1 {\displaystyle A^{-1}} , chuyển sang bước 2
  • Bước 2: Lập ma trận chuyển vị A' của A.
  • Bước 3: Lập ma trận phụ hợp của A' được định nghĩa như sau A ∗ = ( A i j ′ ) n n {\displaystyle A^{*}=(A'_{ij})_{nn}} với A ′ = ( A i j ′ ) {\displaystyle A'=(A'_{ij})} là phần bù đại số của phần tử ở hàng i, cột j trong ma trận A'.
  • Bước 4: Tính ma trận A − 1 = 1 d e t ( A ) A ∗ {\displaystyle A^{-1}={\frac {1}{det(A)}}A^{*}}

Ví dụ

[sửa | sửa mã nguồn]

Cho A = [ 1 − 2 3 2 ] {\displaystyle A={\begin{bmatrix}1&-2\\3&2\\\end{bmatrix}}} . Tính A − 1 {\displaystyle A^{-1}} ,

Tìm ma trận nghịch đảo bằng phép khử Gauss-Jordan

[sửa | sửa mã nguồn]

Phép khử Gauss-Jordan là một phương pháp tìm ma trận nghịch đảo.

  • Bước 1: Tính định thức của ma trận A

d e t ( A ) = | 1 − 2 3 2 | = 1 ∗ 2 − ( − 2 ∗ 3 ) = 8 {\displaystyle det(A)={\begin{vmatrix}1&-2\\3&2\end{vmatrix}}=1*2-(-2*3)=8}

d e t ( A ) = 8 ≠ 0 {\displaystyle det(A)=8\neq 0} suy ra tồn tại ma trận nghịch đảo A − 1 {\displaystyle A^{-1}} , chuyển sang bước 2.

  • Bước 2: Tìm ma trận chuyển vị A' của A.

A ′ = [ 1 3 − 2 2 ] {\displaystyle A'={\begin{bmatrix}1&3\\-2&2\end{bmatrix}}}

  • Bước 3: Tìm ma trận phụ hợp A* của A'.

A ∗ = [ 2 2 − 3 1 ] {\displaystyle A^{*}={\begin{bmatrix}2&2\\-3&1\end{bmatrix}}}

  • Bước 4: Tính ma trận nghịch đảo A − 1 {\displaystyle A^{-1}} .

A − 1 = 1 8 [ 2 2 − 3 1 ] = [ 0.25 0.25 − 0.375 0.125 ] {\displaystyle A^{-1}={\frac {1}{8}}{\begin{bmatrix}2&2\\-3&1\end{bmatrix}}={\begin{bmatrix}0.25&0.25\\-0.375&0.125\end{bmatrix}}}

Xem thêm

[sửa | sửa mã nguồn]
  • Phép nhân ma trận
  • Ma trận đơn vị
  • Ma trận giả đảo

Tham khảo

[sửa | sửa mã nguồn]
  • Hazewinkel, Michiel biên tập (2001), “Inversion of a matrix”, Bách khoa toàn thư Toán học, Springer, ISBN 978-1-55608-010-4
  • Bernstein, Dennis S. (2009). Matrix Mathematics: Theory, Facts, and Formulas (ấn bản thứ 2). Princeton University Press. ISBN 978-0691140391 – qua Google Books.
  • Petersen, Kaare Brandt; Pedersen, Michael Syskind (ngày 15 tháng 11 năm 2012). “The Matrix Cookbook” (PDF). tr. 17–23.

Liên kết ngoài

[sửa | sửa mã nguồn]
  • Sanderson, Grant (ngày 15 tháng 8 năm 2016). “Inverse Matrices, Column Space and Null Space”. Essence of Linear Algebra – qua YouTube.
  • Strang, Gilbert. “Linear Algebra Lecture on Inverse Matrices”. MIT OpenCourseWare.
  • Symbolic Inverse of Matrix Calculator with steps shown
  • Moore-Penrose Inverse Matrix
  • x
  • t
  • s
Các chủ đề trong Đại số tuyến tính
Khái niệm cơ bản
  • Vô hướng
  • Vectơ
  • Không gian vectơ
  • Phép nhân vô hướng
  • Chiếu vectơ
  • Hệ sinh
  • Ánh xạ tuyến tính
  • Phép chiếu tuyến tính
  • Độc lập tuyến tính
  • Tổ hợp tuyến tính
  • Cơ sở
  • Chuyển cơ sở
  • Vectơ hàng và cột
  • Không gian hàng và cột
  • Hạt nhân
  • Giá trị riêng và vectơ riêng
  • Ma trận chuyển vị
  • Hệ phương trình tuyến tính
Three dimensional Euclidean space
Ma trận
  • Khối
  • Phân rã
  • Nghịch đảo
  • Định thức con
  • Tích
  • Hạng
  • Biến đổi
  • Quy tắc Cramer
  • Phép khử Gauss
Song tuyến tính
  • Trực giao
  • Tích vô hướng
  • Không gian tích trong
  • Tích ngoài
  • Quá trình Gram–Schmidt
Đại số đa tuyến tính
  • Định thức
  • Tích vectơ
  • Tích ba
  • Tích vectơ 7 chiều
  • Đại số hình học
  • Đại số ngoài
  • Song vectơ
  • Đa vectơ
  • Tenxơ
  • Cấu xạ ngoài
Xây dựng không gian vectơ
  • Không gian đối ngẫu
  • Tổng trực tiếp
  • Không gian hàm
  • Thương
  • Không gian con
  • Tích tenxơ
Đại số tuyến tính số
  • Floating-point
  • Bình phương tối thiểu tuyến tính
  • Ổn định số
  • Basic Linear Algebra Subprograms
  • Ma trận thưa
  • Comparison of linear algebra libraries
  • Thể loại Thể loại
  • Danh sách Mục lục
  • Cổng thông tin Chủ đề Toán học
  • Trang Wikibooks Wikibook
  • Trang Wikiversity Wikiversity

Từ khóa » Tìm M để Ma Trận Không Khả Nghịch