Một Cái Phễu Có Dạng Hình Nón. Chiều Cao Của ...

  • Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar

Câu hỏi: Một cái phễu có dạng hình nón. Chiều cao của phễu là 20 cm. Người ta đổ một lượng nước vào phễu sao cho chiều cao của cột nước trong phễu bằng 10 cm. Nếu bịt kín miệng phễu rồi lật ngược phễu lên thì chiều cao của cột nước trong phễu gần bằng với giá trị nào sau đây?

A. \( \left( {20\sqrt[3]{7} – 10} \right)cm\) B. \( 10\sqrt[3]{7}cm\) C. \( \left( {20 – 10\sqrt[3]{7}} \right)cm\) D. \( 20\sqrt[3]{7}cm\)

Lời Giải: Đây là các bài toán về Mặt nón, Hình nón, Khối nón trong Phần Mặt tròn xoay.

Gọi thể tích của phễu là V, bán kính đáy phễu là R,R, bán kính của cột nước có dạng khối nón trong H1 là R1

Ta có: \( \frac{{10}}{{20}} = \frac{{{R_1}}}{R} = \frac{1}{2}\)

Gọi V1 là thể tích của nước ta có:

\( \frac{{{V_1}}}{V} = \frac{{\frac{1}{3}\pi R_1^2.10}}{{\frac{1}{3}\pi {R^2}.20}} = \frac{1}{2}{\left( {\frac{{{R_1}}}{R}} \right)^2} = \frac{1}{8} \Rightarrow {V_1} = \frac{1}{8}V\)

Sau khi úp ngược phễu lên, thể tích của phần không có nước có dạng khối nón có thể tích là  \( {V_2} = V – {V_1} = \frac{7}{8}V\)

Gọi h,R2 là chiều cao và bán kính đáy của khối nón không chứa nước ở H2 ta có

\(\begin{array}{l} \frac{{{R_2}}}{R} = \frac{h}{{20}}\\ \frac{{{V_2}}}{V} = \frac{{\frac{1}{3}\pi R_2^2h}}{{\frac{1}{3}\pi {R^2}.20}} = \frac{7}{8} \Rightarrow {\left( {\frac{{{R_2}}}{R}} \right)^2}.\frac{h}{{20}} = \frac{7}{8} \Leftrightarrow \frac{{{h^3}}}{{{{20}^3}}} = \frac{7}{8} \Rightarrow h = 10\sqrt[3]{7} \end{array}\)

⇒ Chiều cao của cột nước trong H2 là  \( 20 – 10\sqrt[3]{7}cm\)

===============

==================== Thuộc chủ đề: Trắc nghiệm Mặt Nón

Reader Interactions

Để lại một bình luận Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Bình luận *

Tên *

Email *

Trang web

Δ

Sidebar chính

MỤC LỤC

Từ khóa » Hình Phễu Ngược