Một Nguyên Hàm Của Hàm Số F( X ) = 1 Căn 4 - X^2 Là

LUYỆN TẬP TRẮC NGHIỆM 50000+ CÂU HỎI

DÀNH CHO MỌI LỚP 6 ĐẾN 12

TRUY CẬP NGAY XEM CHI TIẾT Một nguyên hàm của hàm số f( x ) = 1 căn 4 - x^2  là  Một nguyên hàm của hàm số f( x ) = 1 căn 4 - x^2  là 

Câu hỏi

Nhận biết

Một nguyên hàm của hàm số \(f\left( x \right) = {1 \over {\sqrt {4 - {x^2}} }}\) là 

A. \(\int {f\left( x \right)\,{\rm{d}}x}  = {1 \over 2}\arcsin {x \over 2} + C\) B. \(\int {f\left( x \right)\,{\rm{d}}x}  = \arcsin {x \over 2} + 1\) C. \(\int {f\left( x \right)\,{\rm{d}}x}  =  - \,\arccos {x \over 2} + C.\) D. \(\int {f\left( x \right)\,{\rm{d}}x}  =  - \,{1 \over 2}\arccos {x \over 2} + 1.\)

Đáp án đúng: B

Lời giải của Tự Học 365

Giải chi tiết:

Hướng dẫn giải chi tiết

Đặt \(x = 2\sin t \Leftrightarrow {\rm{d}}x = 2\cos t\,{\rm{d}}t\) và \(4 - {x^2} = 4\left( {1 - {{\sin }^2}t} \right) = 4{\cos ^2}t\)

Khi đó \(\int {{{{\rm{d}}x} \over {\sqrt {4 - {x^2}} }} = } \int {{{2\cos t} \over {\sqrt {4{{\cos }^2}t} }}{\rm{d}}t}  = \int {{{2\cos t} \over {2\cos t}}{\rm{d}}t}  = \int {{\rm{d}}t}  = t + C = \arcsin {x \over 2} + C.\)

Chọn B.

Ý kiến của bạn Hủy

Δ

Luyện tập

Câu hỏi liên quan

  • Câu 2: Đề thi thử THPT Hà Trung - Thanh Hóa

    Câu 2: Đề thi thử THPT Hà Trung - Thanh Hóa

    Chi tiết
  • Giải phương trình 7<sup>2x + 1</sup> – 8.7<sup>x</sup> + 1 =

    Giải phương trình 72x + 1 – 8.7x + 1 = 0.

    Chi tiết
  • câu 2 

    câu 2 

    Chi tiết
  • Giải phương trình (1 – i)z + (2 – i) = 4 – 5i trên tập số ph

    Giải phương trình (1 – i)z + (2 – i) = 4 – 5i trên tập số phức. 

    Chi tiết
  • Giải phương trình: (sin2x + cos2x)cosx + 2cos2x - sinx = 0

    Giải phương trình: (sin2x + cos2x)cosx + 2cos2x - sinx = 0

    Chi tiết
  • Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y

    Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d: = = và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình  mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.

    Chi tiết
  • câu 7 

    câu 7 

    Chi tiết
  • Tìm số nguyên dương n nhỏ nhất sao cho z<sub>1 </sub>=

    Tìm số nguyên dương n nhỏ nhất sao cho z1 = là số thực và z2 = là số ảo.

    Chi tiết
  • Giải phương trình 3<sup>1 – x</sup> – 3<sup>x</sup> + 2 = 0.

    Giải phương trình 31 – x – 3x + 2 = 0.

    Chi tiết
  • Giải phương trình : z<sup>3</sup> + i = 0

    Giải phương trình : z3 + i = 0

    Chi tiết

Đăng ký

Năm sinh 20012002200320042005200620072008200920102011201220132014201520162017201820192020 hoặc Đăng nhập nhanh bằng: đăng nhập bằng google (*) Khi bấm vào đăng ký tài khoản, bạn chắc chắn đã đoc và đồng ý với Chính sách bảo mật và Điều khoản dịch vụ của Tự Học 365.

Từ khóa » Nguyên Hàm Của 1/4-x^2