Nếu Tất Cả Các đường Chéo Của đa Giác đều 12 Cạnh được...
Có thể bạn quan tâm
CHỌN BỘ SÁCH BẠN MUỐN XEM
Hãy chọn chính xác nhé!
Trang chủ Lớp 11 ToánCâu hỏi:
21/07/2024 2,944Nếu tất cả các đường chéo của đa giác đều 12 cạnh được vẽ thì số đường chéo là:
A. 121
B. 66
C. 132
D. 54
Đáp án chính xác Xem lời giải Xem lý thuyết Câu hỏi trong đề: Trắc nghiệm Hoán vị chỉnh hợp tổ hợp có đáp án Bắt Đầu Thi ThửTrả lời:
Giải bởi VietjackĐáp án:
Cứ 2 đỉnh của đa giác sẽ tạo thành một đoạn thẳng (bao gồm cả cạnh đa giác và đường chéo).
Khi đó có C122 =66 đoạn thẳng.
Trong 66 đoạn thẳng trên có 12 đoạn thẳng là cạnh của đa giác nên:
Số đường chéo là: 66−12=54
Đáp án cần chọn là: D
Câu trả lời này có hữu ích không?
0 0Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
ĐĂNG KÝ VIP
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Một hội đồng gồm 5 nam và 4 nữ được tuyển vào một ban quản trị gồm 4 người. Biết rằng ban quản trị có ít nhất một nam và một nữ. Hỏi có bao nhiêu cách tuyển chọn?
Xem đáp án » 31/07/2021 15,439Câu 2:
Từ các số 0,1,2,7,8,9 tạo được bao nhiêu số chẵn có 5 chữ số khác nhau?
Xem đáp án » 31/07/2021 5,684Câu 3:
Có bao nhiêu số tự nhiên có các chữ số đôi một khác nhau nhỏ hơn 1000 được lập từ năm chữ số 0,1,2,3,4?
Xem đáp án » 31/07/2021 4,847Câu 4:
Số cách chia 10 học sinh thành 3 nhóm lần lượt gồm 2, 3, 5 học sinh là:
Xem đáp án » 31/07/2021 4,110Câu 5:
Từ 5 bông hoa hồng vàng, 3 bông hoa hồng trắng và 4 bông hoa hồng đỏ (các bông hoa xem như đôi một khác nhau), người ta muốn chọn một bó hồng gồm 7 bông, hỏi có bao nhiêu cách chọn bó hoa trong đó có ít nhất 3 bông hoa hồng vàng và 3 bông hoa hồng đỏ?
Xem đáp án » 31/07/2021 4,039Câu 6:
Một nhóm 4 đường thẳng song song cắt một nhóm 5 đường thẳng song song khác. Hỏi có bao nhiêu hình bình hành được tạo thành?
Xem đáp án » 31/07/2021 3,797Câu 7:
Đội thanh niên xung kích của một trường phổ thông có 12 học sinh, gồm 5 học sinh lớp A, 4 học sinh lớp B và 3 học sinh lớp C. Cần chọn 4 học sinh đi làm nhiệm vụ sao cho 4 học sinh này thuộc không quá 2 trong 3 lớp trên. Hỏi có bao nhiêu cách chọn như vậy?
Xem đáp án » 31/07/2021 3,734Câu 8:
Một tổ gồm 7 nam và 6 nữ. Hỏi có bao nhiêu cách chọn 4 em đi trực sao cho có ít nhất 2 nữ?
Xem đáp án » 31/07/2021 2,449Câu 9:
Trong một tổ học sinh có 5 em gái và 10 em trai. Thùy là 1 trong 5 em gái và Thiện là 1 trong 10 em trai. Thầy chủ nhiệm chọn ra 1 nhóm 5 bạn tham gia buổi văn nghệ tới. Hỏi thầy chủ nhiệm có bao nhiêu cách chọn mà trong đó có ít nhất một trong hai em Thùy và Thiện không được chọn?
Xem đáp án » 31/07/2021 2,139Câu 10:
Từ các số 0,1,2,7,8,9 tạo được bao nhiêu số lẻ có 5 chữ số khác nhau?
Xem đáp án » 31/07/2021 1,573Câu 11:
Trong tủ sách có tất cả 10 cuốn sách được đánh số tử 1 đến 10. Hỏi có bao nhiêu cách sắp xếp sao cho quyển thứ nhất ở kề quyển thứ hai:
Xem đáp án » 31/07/2021 1,534Câu 12:
Trong một túi đựng 10 viên bi đỏ, 20 viên bi xanh và 15 viên bi vàng. Các viên bi có cùng kích thước. Số cách lấy ra 5 viên bi và xếp chúng vào 5 ô sao cho 5 ô đó có ít nhất 1 viên bi đỏ là:
Xem đáp án » 31/07/2021 1,500Câu 13:
Một nhóm đoàn viên thanh niên tình nguyện về sinh hoạt tại một xã nông thôn gồm có 21 đoàn viên nam và 15 đoàn viên nữ. Hỏi có bao nhiêu cách phân chia 3 nhóm về 3 ấp để hoạt động sao cho mỗi ấp có 7 đoàn viên nam và 5 đoàn viên nữ?
Xem đáp án » 31/07/2021 1,476Câu 14:
Từ 12 người, người ta thành lập một ban kiểm tra gồm 2 người lãnh đạo và 3 ủy viên. Hỏi có bao nhiêu cách thành lập ban kiểm tra?
Xem đáp án » 31/07/2021 1,002 Xem thêm các câu hỏi khác »LÝ THUYẾT
Mục lục nội dung
Xem thêmI. Hoán vị
1. Định nghĩa
- Định nghĩa: Cho tập hợp A gồm n phần tử (n ≥ 1). Mỗi kết quả của sự sắp xếp thứ tự n phần tử của tập hợp A được gọi là một hoán vị của n phần tử đó.
- Nhận xét: Hai hoán vị của n phần tử khác nhau ở thứ tự sắp xếp.
Chẳng hạn, hai hoán vị abc và cab của ba phần tử a; b; c là khác nhau.
2. Số các hoán vị
Kí hiệu: Pn là số các hoán vị của n phần tử.
- Định lí: Pn = n.(n – 1).(n – 2)….2.1
- Chú ý: Kí hiệu n.(n – 1)…2.1 là n! (đọc là n là giai thừa), ta có: Pn = n!.
- Ví dụ 1. Có bao nhiêu cách xếp 10 học sinh thành một hàng ngang.
Lời giải:
Số cách xếp 10 học sinh thành một hàng ngang là 10! cách.
II. Chỉnh hợp
1. Định nghĩa.
- Cho tập hợp A gồm n phần tử (n ≥ 1).
Kết quả của việc lấy k phần tử khác nhau từ n phần tử của tập hợp A và sắp xếp chúng theo một thứ tự nào đó được gọi là một chỉnh hợp chập k của n phần tử đã cho.
- Ví dụ 2. Lớp 11A2 có 40 học sinh. Khi đó; mỗi cách chọn ra 4 bạn làm tổ trưởng tổ 1; tổ 2; tổ 3; tổ 4 chính là số chỉnh hợp chập 4 của 40 học sinh.
2. Số các chỉnh hợp
- Kí hiệu Ank là số các chỉnh hợp chập k của n phần tử (1 ≤ k ≤ n) .
- Định lí:Ank = n(n−1)...(n−k+ 1)
- Ví dụ 3. Từ năm điểm phần biệt A; B; C; D; E ta lập được bao nhiêu vectơ khác có điểm đầu và điểm cuối là năm điểm đã cho.
Lời giải:
Một vectơ được xác định khi biết điểm đầu và điểm cuối của nó.
Số vecto khác 0→ có điểm đầu và điểm cuối là năm điểm đã cho chính là chỉnh hợp chập 2 của 5 phần tử:
Do đó, ta có: A52 = 5.4.3= 60 vectơ thỏa mãn đầu bài.
- Chú ý:
a) Với quy ước 0! = 1 ta có: Ank = n!(n−k)!; 1 ≤ k ≤n.
b) Mỗi hoán vị của n phần tử cũng chính là một chỉnh hợp chập n của n phần tử đó.
Vì vậy: Pn = Ann.
III. Tổ hợp
1. Định nghĩa.
- Giả sử tập A có n phần tử (n ≥ 1). Mỗi tập con gồm k phần tử của A được gọi là một tổ hợp chập k của n phần tử đã cho.
- Chú ý: Số k trong định nghĩa cần thỏa mãn điều kiện 1 ≤ k ≤ n. Tuy vậy, tập hợp không có phần tử nào là tập rỗng nên ta quy ước gọi tổ hợp chập 0 của n phần tử là tập rỗng.
- Ví dụ 4. Cho tập A = {3; 4; 5; 6}.
Ta liệt kê các tổ hợp chập 3 của A là: {3; 4; 5}; {3; 4; 6}; {3; 5; 6}; {4; 5; 6}.
2. Số các tổ hợp.
Kí hiệu Cnk là số các tổ hợp chập k của n phần tử ( 0 ≤ k ≤ n).
- Định lí: Cnk = n!k!(n−k)!.
Ví dụ 5. Cho 8 điểm phân biệt A; B; C; D; E; F; G; H, trong đó không có 3 điểm nào thẳng hàng, ta lập được bao nhiêu tam giác có 3 đỉnh là 8 điểm đã cho.
Lời giải:
Mỗi tam giác được lập là 1 tổ hợp chập 3 của 8 (điểm).
Vì vậy số tam giác có 3 đỉnh là 8 điểm đã cho là C83 = 56.
3. Tính chất của các số Cnk
a) Tính chất 1.
Cnk = Cnn−k; 0 ≤ k ≤ n.
Ví dụ 6. C83=C85=56.
b) Tính chất 2 (công thức Pa-xcan).
Cn−1k−1 + Cn−1k= Cnk; 1 ≤ k < n
Ví dụ 7. C84+C85=C95=126.
Đề thi liên quan
Xem thêm »- Trắc nghiệm tổng hơp Toán 11 (có đáp án) 76 đề 22949 lượt thi Thi thử
- Trắc nghiệm Đề thi Toán 11 (có đáp án) 17 đề 8267 lượt thi Thi thử
- Trắc nghiệm Toán 11 Ôn tập chương 1: Hàm số lượng giác và phương trình lượng giác (có đáp án) 12 đề 4836 lượt thi Thi thử
- Trắc nghiệm Toán 11 Ôn tập chương 4: Giới hạn (có đáp án) 7 đề 4059 lượt thi Thi thử
- Trắc nghiệm Toán 11 Bài 3: Một số phương trình lượng giác thường gặp (có đáp án) 8 đề 3782 lượt thi Thi thử
- Trắc nghiệm Toán 11 Ôn tập chương 5: Đạo hàm (có đáp án) 11 đề 3715 lượt thi Thi thử
- Trắc nghiệm Toán 11 Ôn tập chương 2: Tổ hợp - Xác suất (có đáp án) 15 đề 3198 lượt thi Thi thử
- Trắc nghiệm Toán 11 Bài 1: Hàm số lượng giác (có đáp án) 6 đề 3132 lượt thi Thi thử
- Trắc nghiệm Toán 11 Bài 2: Phương trình lượng giác cơ bản (có đáp án) 6 đề 3064 lượt thi Thi thử
- Trắc nghiệm Biến cố và xác suất của biến cố có đáp án 4 đề 3042 lượt thi Thi thử
Câu hỏi mới nhất
Xem thêm »-
Một vòng quay trò chơi có bán kính 57 m, trục quay cách mặt đất 57,5 m, quay đều mỗi vòng hết 15 phút. Khi vòng quay quay đều, khoảng cách h (m) từ một cabin gắn tại điểm A của vòng quay đến mặt đất được tính bởi công thức:
\(h\left( t \right) = 57\sin \left( {\frac{{2\pi }}{{15}}t - \frac{\pi }{2}} \right) + 57,5\)
với t là thời gian quay của vòng quay tính bằng phút (t ≥ 0) (Hình 12).
Khi quay một vòng lần thứ nhất tính từ thời điểm t = 0 (phút), tại thời điểm nào của t thì cabin ở vị trí cao nhất? Ở vị trí đạt được chiều cao là 86 m?
250 18/04/2024 Xem đáp án -
Một vòng quay trò chơi có bán kính 57 m, trục quay cách mặt đất 57,5 m, quay đều mỗi vòng hết 15 phút. Khi vòng quay quay đều, khoảng cách h (m) từ một cabin gắn tại điểm A của vòng quay đến mặt đất được tính bởi công thức:
\(h\left( t \right) = 57\sin \left( {\frac{{2\pi }}{{15}}t - \frac{\pi }{2}} \right) + 57,5\)
với t là thời gian quay của vòng quay tính bằng phút (t ≥ 0) (Hình 12).
Khi t = 0 (phút) thì khoảng cách từ cabin đến mặt đất bằng bao nhiêu?
138 18/04/2024 Xem đáp án -
Một vòng quay trò chơi có bán kính 57 m, trục quay cách mặt đất 57,5 m, quay đều mỗi vòng hết 15 phút. Khi vòng quay quay đều, khoảng cách h (m) từ một cabin gắn tại điểm A của vòng quay đến mặt đất được tính bởi công thức:
\(h\left( t \right) = 57\sin \left( {\frac{{2\pi }}{{15}}t - \frac{\pi }{2}} \right) + 57,5\)
với t là thời gian quay của vòng quay tính bằng phút (t ≥ 0) (Hình 12).
Tính chu kì của hàm số h(t)?
121 18/04/2024 Xem đáp án -
Từ đồ thị hàm số y = sin x, tìm:
Các khoảng giá trị của x để hàm số y = sin x nhận giá trị dương. 128 18/04/2024 Xem đáp án -
Từ đồ thị hàm số y = sin x, tìm:
Các giá trị của x để sin x = \(\frac{1}{2}\);
121 18/04/2024 Xem đáp án -
Từ đồ thị hàm số y = cos x, cho biết:
Có bao nhiêu giá trị của x trên khoảng \(\left( { - \frac{{9\pi }}{2}; - \frac{{3\pi }}{2}} \right)\) để cos x = 0.
115 18/04/2024 Xem đáp án -
Từ đồ thị hàm số y = cos x, cho biết:
Có bao nhiêu giá trị của x trên đoạn [ – 5π; 0] để cos x = 1;
118 18/04/2024 Xem đáp án -
Xét sự biến thiên của mỗi hàm số sau trên các khoảng tương ứng:
y = cosx trên khoảng (19π; 20π), (– 30π; – 29π).
121 18/04/2024 Xem đáp án -
Xét sự biến thiên của mỗi hàm số sau trên các khoảng tương ứng:
y = sin x trên khoảng \(\left( { - \frac{{19\pi }}{2};\, - \frac{{17\pi }}{2}} \right),\,\,\left( { - \frac{{13\pi }}{2};\, - \frac{{11\pi }}{2}} \right)\);
120 18/04/2024 Xem đáp án -
Tìm giá trị lớn nhất và giá trị nhỏ nhất của các hàm số:
\(y = \frac{1}{{4 - \sin x}}\).
126 18/04/2024 Xem đáp án
Từ khóa » Cách Vẽ đa Giác đều 12 Cạnh
-
Hướng Dẫn Vẽ Hình Tam Giác đều Lục Giác đều Và đa Giác đều 12 Cạnh
-
Dựng đa Giác 12 Cạnh đều Ntn Và Cách Vẽ? - MTrend
-
Hướng Dẫn Vẽ Hình Tam Giác đều Lục Giác đều Và đa Giác đều 12 Cạnh
-
Cách Vẽ Lục Giác đều - Mẹo Vẽ Chưa đầy 1 Phút - Giáo Viên Việt Nam
-
Dựng đa Giác 12 Cạnh đều Ntn Và Cách Vẽ? Nam 2022 | Lớ
-
Dựng Hình đa Giác đều - Vườn Toán
-
Đa Giác đều 12 Cạnh Có Bao Nhiêu đỉnh
-
Câu 5 Trang 156 Sách Bài Tập (SBT) Toán 8 Tập 1: Tính Số đo Của ...
-
Đa Giác đều 12 Cạnh Có Bao Nhiêu đỉnh - Toàn Thua
-
Cho đa Giác đều 12 Cạnh Có Bao Nhiêu Hình Chữ Nhật
-
Đa Giác đều 12 Cạnh Có Bao Nhiêu đường Chéo - Hàng Hiệu
-
[LỜI GIẢI] Cho đa Giác Lồi Có 12 Cạnh. Số đường Chéo Của đa Giác Là
-
Nếu Tất Cả Các đường Chéo Của đa Giác đều (12 ) Cạnh được Vẽ Thì