Nguyên Hàm Từ 0 đến Pi/2 Của Cos^3x/1 Sinx Dx - Hoc24

HOC24

Lớp học Học bài Hỏi bài Giải bài tập Đề thi ĐGNL Tin tức Cuộc thi vui Khen thưởng
  • Tìm kiếm câu trả lời Tìm kiếm câu trả lời cho câu hỏi của bạn
Đóng Đăng nhập Đăng ký

Lớp học

  • Lớp 12
  • Lớp 11
  • Lớp 10
  • Lớp 9
  • Lớp 8
  • Lớp 7
  • Lớp 6
  • Lớp 5
  • Lớp 4
  • Lớp 3
  • Lớp 2
  • Lớp 1

Môn học

  • Toán
  • Vật lý
  • Hóa học
  • Sinh học
  • Ngữ văn
  • Tiếng anh
  • Lịch sử
  • Địa lý
  • Tin học
  • Công nghệ
  • Giáo dục công dân
  • Tiếng anh thí điểm
  • Đạo đức
  • Tự nhiên và xã hội
  • Khoa học
  • Lịch sử và Địa lý
  • Tiếng việt
  • Khoa học tự nhiên
  • Hoạt động trải nghiệm
  • Hoạt động trải nghiệm, hướng nghiệp
  • Giáo dục kinh tế và pháp luật

Chủ đề / Chương

Bài học

HOC24

Khách Khách vãng lai Đăng nhập Đăng ký Khám phá Hỏi đáp Đề thi Tin tức Cuộc thi vui Khen thưởng
  • Tất cả
  • Toán
  • Vật lý
  • Hóa học
  • Sinh học
  • Ngữ văn
  • Tiếng anh
  • Lịch sử
  • Địa lý
  • Tin học
  • Công nghệ
  • Giáo dục công dân
  • Tiếng anh thí điểm
  • Hoạt động trải nghiệm, hướng nghiệp
  • Giáo dục kinh tế và pháp luật
Hãy tham gia nhóm Học sinh Hoc24OLM Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Câu hỏi

Hủy Xác nhận phù hợp Chọn lớp Tất cả Lớp 12 Lớp 11 Lớp 10 Lớp 9 Lớp 8 Lớp 7 Lớp 6 Lớp 5 Lớp 4 Lớp 3 Lớp 2 Lớp 1 Môn học Toán Vật lý Hóa học Sinh học Ngữ văn Tiếng anh Lịch sử Địa lý Tin học Công nghệ Giáo dục công dân Tiếng anh thí điểm Đạo đức Tự nhiên và xã hội Khoa học Lịch sử và Địa lý Tiếng việt Khoa học tự nhiên Hoạt động trải nghiệm Hoạt động trải nghiệm, hướng nghiệp Giáo dục kinh tế và pháp luật Mới nhất Mới nhất Chưa trả lời Câu hỏi hay Thảob Đỗ Thảob Đỗ 7 tháng 10 2021 lúc 21:38

Nguyên hàm từ 0 đến pi/2 của cos^3x/1+sinx dx

Lớp 12 Toán Chương 3: NGUYÊN HÀM. TÍCH PHÂN VÀ ỨNG DỤNG Những câu hỏi liên quan Thảob Đỗ
  • Thảob Đỗ
7 tháng 10 2021 lúc 21:36

Nguyên hàm từ 0 đến pi/6 của (1-sin2x+cos2x)/(sinx-cosx)dx

Xem chi tiết Lớp 12 Toán Chương 3: NGUYÊN HÀM. TÍCH PHÂN VÀ ỨNG DỤNG 0 0 Khách Gửi Hủy Thảob Đỗ
  • Thảob Đỗ
7 tháng 10 2021 lúc 21:41

Nguyên hàm từ pi/2 đến 0 của (sin^4x+cos^4x)dx

Xem chi tiết Lớp 12 Toán Chương 3: NGUYÊN HÀM. TÍCH PHÂN VÀ ỨNG DỤNG 0 0 Khách Gửi Hủy Vũ Thị Nhung
  • Vũ Thị Nhung
14 tháng 3 2019 lúc 21:45

A = Tích phân từ -1/2 đến 1/2 của Cos[ln(1-x)/(1+x)]dx.

B= tích phân từ 0 đến pi/2 của [cos^3/(cos^3+sin^3)]dx.

C= tích phân từ o đến pi/2 của (căn sinx- căn cosx)dx.

Xem chi tiết Lớp 12 Toán Chương 3: NGUYÊN HÀM. TÍCH PHÂN VÀ ỨNG DỤNG 1 0 Khách Gửi Hủy Nguyễn Việt Lâm Nguyễn Việt Lâm CTV 14 tháng 3 2019 lúc 22:28

\(A=\int\limits^{0.5}_{-0.5}cos\left[ln\left(\frac{1-x}{1+x}\right)\right]dx\) hay \(A=\int\limits^{0.5}_{-0.5}cos\left[\frac{ln\left(1-x\right)}{1+x}\right]dx\)

Dù thế nào thì có lẽ người ra đề cũng nhầm lẫn, đây là 1 bài toán ko thể giải quyết trong chương trình phổ thông, nếu hàm là hàm sin chứ ko phải cos thì còn có cơ hội làm được trong chương trình 12

Tích phân sửa lại như sau thì giải quyết được bằng phương pháp thông thường:

\(A=\int\limits^{0.5}_{-0.5}sin\left[ln\left(\frac{1-x}{1+x}\right)\right]dx\)

Vì hàm dưới dấu tích phân là hàm lẻ nên chỉ cần đặt \(x=-t\) sau đó đổi biến và cộng lại là suy ra ngay lập tức \(A=0\)

\(B=\int\limits^{\frac{\pi}{2}}_0\frac{cos^3x}{cos^3x+sin^3x}dx\) (1)

Đặt \(\frac{\pi}{2}-x=t\Rightarrow dx=-dt;\left\{{}\begin{matrix}x=0\Rightarrow t=\frac{\pi}{2}\\x=\frac{\pi}{2}\Rightarrow t=0\end{matrix}\right.\)

\(B=\int\limits^0_{\frac{\pi}{2}}\frac{sin^3t}{sin^3t+cos^3t}\left(-dt\right)=\int\limits^{\frac{\pi}{2}}_0\frac{sin^3t}{sin^3t+cos^3t}dt=\int\limits^{\frac{\pi}{2}}_0\frac{sin^3x}{sin^3x+cos^3x}dx\) (2)

Cộng vế với vế của (1) và (2):

\(2B=\int\limits^{\frac{\pi}{2}}_0\frac{sin^3x+cos^3x}{sin^3x+cos^3x}dx=\int\limits^{\frac{\pi}{2}}_0dx=\frac{\pi}{2}\Rightarrow B=\frac{\pi}{4}\)

c/ \(C=\int\limits^{\frac{\pi}{2}}_0\left(\sqrt{sinx}-\sqrt{cosx}\right)dx\) (1)

Đặt \(\frac{\pi}{2}-x=t\Rightarrow dx=-dt;\left\{{}\begin{matrix}x=0\Rightarrow t=\frac{\pi}{2}\\x=\frac{\pi}{2}\Rightarrow t=0\end{matrix}\right.\)

\(C=\int\limits^0_{\frac{\pi}{2}}\left(\sqrt{cost}-\sqrt{sint}\right)\left(-dt\right)=\int\limits^{\frac{\pi}{2}}_0\left(\sqrt{cost}-\sqrt{sint}\right)dt=\int\limits^{\frac{\pi}{2}}_0\left(\sqrt{cosx}-\sqrt{sinx}\right)dx\left(2\right)\)

Cộng vế với vế của (1) và (2):

\(2C=\int\limits^{\frac{\pi}{2}}_0\left(\sqrt{sinx}-\sqrt{cosx}+\sqrt{cosx}-\sqrt{sinx}\right)dx=0\)

\(\Rightarrow C=0\)

//Các dạng bài này đều giống nhau, nếu biểu thức đối xứng sin, cos và cận \(0;\frac{\pi}{2}\) thì đặt \(\frac{\pi}{2}-x=t\) rồi biến đổi và cộng lại

Đúng 0 Bình luận (0) Khách Gửi Hủy Vũ Thị Nhung
  • Vũ Thị Nhung
14 tháng 3 2019 lúc 21:49

A= tích phân từ 0 đến pi/2 của [căn sinx/(căn sinx+căn cosx)]dx.

B = tích phân từ 0 đến pi/2 của [ căn cosx /( căn cosx + căn sinx)]dx.

Xem chi tiết Lớp 12 Toán Chương 3: NGUYÊN HÀM. TÍCH PHÂN VÀ ỨNG DỤNG 1 0 Khách Gửi Hủy Nguyễn Việt Lâm Nguyễn Việt Lâm CTV 14 tháng 3 2019 lúc 22:02

Đề thế này hả bạn?

\(A=\int\limits^{\frac{\pi}{2}}_0\frac{\sqrt{sinx}}{\sqrt{sinx}+\sqrt{cosx}}dx\) (1)

Đặt \(\frac{\pi}{2}-x=t\Rightarrow dx=-dt;\left\{{}\begin{matrix}x=0\Rightarrow t=\frac{\pi}{2}\\x=\frac{\pi}{2}\Rightarrow t=0\end{matrix}\right.\)

\(A=\int\limits^0_{\frac{\pi}{2}}\frac{\sqrt{cost}}{\sqrt{cost}+\sqrt{sint}}\left(-dt\right)=\int\limits^{\frac{\pi}{2}}_0\frac{\sqrt{cost}}{\sqrt{sint}+\sqrt{cost}}dt=\int\limits^{\frac{\pi}{2}}_0\frac{\sqrt{cosx}}{\sqrt{sinx}+\sqrt{cosx}}dx\) (2)

Cộng vế với vế của (1) và (2):

\(2A=\int\limits^{\frac{\pi}{2}}_0\frac{\sqrt{sinx}}{\sqrt{sinx}+\sqrt{cosx}}dx+\int\limits^{\frac{\pi}{2}}_0\frac{\sqrt{cosx}}{\sqrt{sinx}+\sqrt{cosx}}dx=\int\limits^{\frac{\pi}{2}}_0\frac{\sqrt{sinx}+\sqrt{cosx}}{\sqrt{sinx}+\sqrt{cosx}}dx=\int\limits^{\frac{\pi}{2}}_0dx=\frac{\pi}{2}\)

\(\Rightarrow A=\frac{\pi}{4}\)

b/ \(B=\int\limits^{\frac{\pi}{2}}_0\frac{\sqrt{cosx}}{\sqrt{cosx}+\sqrt{sinx}}dx\)

Từ (2) ta thấy \(B=A=\frac{\pi}{4}\)

Đúng 0 Bình luận (1) Khách Gửi Hủy Huyền anh
  • Huyền anh
5 tháng 3 2023 lúc 16:17

Cho hàm số f(x) liên tục trên R Biết cận 0->pi/2 sin2x f(cos^2(x)) dx =1 Khi đó cân 0->1[2f(1-x) -3x^2+5]dx=?

Xem chi tiết Lớp 12 Toán Bài 1: Nguyên hàm 1 0 Khách Gửi Hủy Nguyễn Việt Lâm Nguyễn Việt Lâm CTV 5 tháng 3 2023 lúc 16:25

Đề là cho \(\int\limits^{\dfrac{\pi}{2}}_0sin2x.f\left(cos^2x\right)dx=1\)

Tính \(\int\limits^1_0\left[2f\left(1-x\right)-3x^2+5\right]dx\) 

Đúng ko nhỉ?

Xét \(\int\limits^{\dfrac{\pi}{2}}_0sin2x.f\left(cos^2x\right)dx\)

Đặt \(cos^2x=1-u\Rightarrow-2sinx.cosxdx=-du\) \(\Rightarrow sin2xdx=du\)

\(\left\{{}\begin{matrix}x=0\Rightarrow u=0\\x=\dfrac{\pi}{2}\Rightarrow u=1\end{matrix}\right.\) \(\Rightarrow I=\int\limits^1_0f\left(1-u\right)du=\int\limits^1_0f\left(1-x\right)dx\)

\(\Rightarrow\int\limits^1_0f\left(1-x\right)dx=1\)

\(\Rightarrow\int\limits^1_0\left[2f\left(1-x\right)-3x^2+5\right]dx=2\int\limits^1_0f\left(1-x\right)dx-\int\limits^1_0\left(3x^2-5\right)dx\)

\(=2.1-\left(-4\right)=6\)

Đúng 1 Bình luận (2) Khách Gửi Hủy Tlun
  • Tlun
5 tháng 8 2023 lúc 20:24

1. Cos² 3x = 1

2.Sinx = 1 - cos²x

3.Tìm nghiệm € (0;2x) của phương trình cos - 2x + sinx=0

4.Sin2x + sinx = 0

5.căn 2 cos (x+pi/3) = 1

Xem chi tiết Lớp 11 Toán 1 0 Khách Gửi Hủy Nguyễn Lê Phước Thịnh Nguyễn Lê Phước Thịnh CTV 5 tháng 8 2023 lúc 20:28

1: =>sin^2(3x)=0

=>sin 3x=0

=>3x=kpi

=>x=kpi/3

2:

\(sinx=1-cos^2x=sin^2x\)

=>\(sin^2x-sinx=0\)

=>sin x(sin x-1)=0

=>sin x=0 hoặc sin x=1

=>x=pi/2+k2pi hoặc x=kpi

4:

sin 2x+sin x=0

=>sin 2x=-sin x=sin(-x)

=>2x=-x+k2pi hoặc 2x=pi+x+k2pi

=>x=pi+k2pi hoặc x=k2pi/3

5: =>cos(x+pi/3)=1/căn 2

=>x+pi/3=pi/4+k2pi hoặc x+pi/3=-pi/4+k2pi

=>x=-pi/12+k2pi hoặc x=-7/12pi+k2pi

Đúng 0 Bình luận (0) Khách Gửi Hủy Crackinh
  • Crackinh
5 tháng 3 2022 lúc 10:20

Tính nguyên hàm các hàm số sau: 

1. \(I=\int\dfrac{cos^2x}{sin^8x}dx\)

2. \(I=\int\left(e^{sinx}+cosx\right)cosxdx\)

 

Xem chi tiết Lớp 12 Toán Bài 1: Nguyên hàm 2 0 Khách Gửi Hủy Nguyễn Việt Lâm Nguyễn Việt Lâm CTV 5 tháng 3 2022 lúc 17:14

1.

\(I=\int\dfrac{cot^2x}{sin^6x}dx=\int\dfrac{cot^2x}{sin^4x}.\dfrac{1}{sin^2x}=\int cot^2x\left(1+cot^2x\right)^2.\dfrac{1}{sin^2x}dx\)

Đặt \(u=cotx\Rightarrow du=-\dfrac{1}{sin^2x}dx\)

\(I=-\int u^2\left(1+u^2\right)^2du=-\int\left(u^6+2u^4+u^2\right)du\)

\(=-\dfrac{1}{7}u^7+\dfrac{2}{5}u^5+\dfrac{1}{3}u^3+C\)

\(=-\dfrac{1}{7}cot^7x+\dfrac{2}{5}cot^5x+\dfrac{1}{3}cot^3x+C\)

Đúng 1 Bình luận (0) Khách Gửi Hủy Nguyễn Việt Lâm Nguyễn Việt Lâm CTV 5 tháng 3 2022 lúc 17:15

2.

\(I=\int\left(e^{sinx}+cosx\right).cosxdx=\int e^{sinx}.cosxdx+\int cos^2xdx\)

\(=\int e^{sinx}.d\left(sinx\right)+\dfrac{1}{2}\int\left(1+cos2x\right)dx\)

\(=e^{sinx}+\dfrac{1}{2}x+\dfrac{1}{4}sin2x+C\)

Đúng 1 Bình luận (0) Khách Gửi Hủy Nguyenthithanhnhu
  • Nguyenthithanhnhu
17 tháng 1 2021 lúc 20:35 Nguyên hàm sin ( bi chia 4 — x )dx Nguyên hàm ( 7/cos^2(3—x) + 8 sin(9—3x) — 1/x + 6/3—2x + căn x )dx Nguyên hàm (7/cos^2x — 8/ 2x+1 +9^2x+1 + e^5—2x +8) dx Nguyên hàm ( 3—căn x + 5x^5—6x^7+1 tất cả / x )dx Xem chi tiết Lớp 12 Toán Chương 3: NGUYÊN HÀM. TÍCH PHÂN VÀ ỨNG DỤNG 0 0 Khách Gửi Hủy Nguyễn Tùng Anh
  • Nguyễn Tùng Anh
19 tháng 2 2022 lúc 15:54

Cho hàm số f(x) liên tục trên \([-\Pi;\Pi]\)

Chứng minh: \(\int\limits^{\Pi}_0x.f\left(sinx\right)dx=\dfrac{\Pi}{2}\int\limits^{\Pi}_0f\left(sinx\right)dx\)

Xem chi tiết Lớp 12 Toán Chương 3: NGUYÊN HÀM. TÍCH PHÂN VÀ ỨNG DỤNG 0 0 Khách Gửi Hủy

Khoá học trên OLM (olm.vn)

  • Toán lớp 12
  • Ngữ văn lớp 12
  • Tiếng Anh lớp 12
  • Vật lý lớp 12
  • Hoá học lớp 12
  • Sinh học lớp 12
  • Lịch sử lớp 12
  • Địa lý lớp 12
  • Giáo dục công dân lớp 12

Đề thi đánh giá năng lực

  • Đại học Quốc gia Hà Nội
  • Đại học Quốc gia Hồ Chí Minh
  • Đại học Bách khoa Hà Nội

Từ khóa » Nguyên Hàm Cos^3x/1+sinx