Nguyên Lý Cực Hạn
Có thể bạn quan tâm
Trang chủ Tìm kiếm Trang chủ Tìm kiếm Nguyên lý cực hạn pdf 15 261 KB 4 132 4.2 ( 15 lượt) Xem tài liệu Nhấn vào bên dưới để tải tài liệu Tải về Đang chuẩn bị: 60 Bắt đầu tải xuống Đang xem trước 10 trên tổng 15 trang, để tải xuống xem đầy đủ hãy nhấn vào bên trên Chủ đề liên quan Nguyên lý cực hạn Nguyên lý cực hạn trong giải toán Bất đẳng thức Phương trình Diophant Nguyên lý cực hạn trong tổ hợp
Nội dung
Nguyên lý cực hạn Trần Nam Dũng Trường Đại học KHTN Tp HCM Bài viết này được phát triển từ bài viết “Các phương pháp và kỹ thuật chứng minh” mà chúng tôi đã trình bày tại Hội nghị “Các chuyên đề Olympic Toán chọn lọc” tại Ba Vì, Hà Nội, tháng 5-2010 và giảng dạy cho đội tuyển Olympic Việt Nam dự IMO 2010. Trong bài này, chúng tôi tập trung chi tiết hơn vào các ứng dụng của Nguyên lý cực hạn trong giải toán. Một tập hợp hữu hạn các số thực luôn có phần tử lớn nhất và phần tử nhỏ nhất. Một tập con bất kỳ của N luôn có phần tử nhỏ nhất. Nguyên lý đơn giản này trong nhiều trường hợp rất có ích cho việc chứng minh. Hãy xét trường hợp biên! Đó là khẩu quyết của nguyên lý này. Một số ví dụ mở đầu Ta xem xét một số ví dụ sử dụng nguyên lý cực hạn Ví dụ 1. Có 3 trường học, mỗi trường có n học sinh. Mỗi một học sinh quen với ít nhất n+1 học sinh từ hai trường khác. Chứng minh rằng người ta có thể chọn ra từ mỗi trường một bạn sao cho ba học sinh được chọn đôi một quen nhau. Giải. Gọi A là học sinh có nhiều bạn nhất ở một trường khác. Gọi số bạn nhiều nhất này là k. Giả sử A ở trường thứ nhất và tập những bạn quen A là M = {B1, B2, …, Bk} ở trường thứ 2. Cũng theo giả thiết, có ít nhất 1 học sinh C ở trường thứ 3 quen với A. Vì C quen không quá k học sinh ở trường thứ nhất nên theo giả thiết C quen với ít nhất n+1 – k học sinh của trường thứ hai, đặt N = {D1, D2, ..., Dm} là những người quen C ở trường thứ hai thì m ≥ n + 1 – k. Vì M, N đều thuộc tập hợp gồm n học sinh và | M | + | N | ≥ k + n+1 – k = n+1 nên ta có M N ≠ . Chọn B nào đó thuộc M N thì ta có A, B, C đôi một quen nhau. Ví dụ 2. Chứng minh rằng không tồn tại số n lẻ, n > 1 sao cho 15n + 1 chia hết cho n Giải. Giả sử tồn tại một số nguyên lẻ n > 1 sao cho 15n + 1 chia hết cho n. Gọi p là ước số nguyên tố nhỏ nhất của n, khi đó p lẻ. Giả sử k là số nguyên dương nhỏ nhất sao cho 15k – 1 chia hết cho p (số k được gọi là bậc của 15 theo modulo p). Vì 152n – 1 = (15n-1)(15n+1) chia hết cho p. Mặt khác, theo định lý nhỏ Fermat thì 15p-1 – 1 chia hết cho p. Theo định nghĩa của k, suy ra k là ước số của các số p-1 và 2n. Suy ra k | (p-1, 2n). Do p là ước số nguyên tố nhỏ nhất của n nên (n, p-1) = 1. Suy ra (p-1, 2n) = 2. Vậy k | 2. Từ đó k = 1 hoặc k = 2. Cả hai trường hợp này đều dẫn tới p = 7. Nhưng điều này mâu thuẫn vì 15n + 1 luôn đồng dư 2 mod 7 Trong hai ví dụ trên, rõ ràng việc xét các trường hợp biên đã đem đến cho chúng ta những thông tin bổ sung quan trọng. Trong ví dụ thứ nhất, việc chọn A là học sinh có số người quen nhiều nhất ở một trường khác đã cho ta thông tin số người quen của C trong trường thứ hai ít nhất là n+1 – k. Trong ví dụ thứ hai, do p là ước số nguyên tố nhỏ nhất nên p-1 nguyên tố cùng nhau với n là bội số của p. Bài tập 1. Cho n điểm xanh và n điểm đỏ trên mặt phẳng, trong đó không có 3 điểm nào thẳng hàng. Chứng minh rằng ta có thể nối 2n điểm này bằng n đoạn thẳng có đầu mút khác màu sao cho chúng đôi một không giao nhau. 2. Trên đường thẳng có 2n+1 đoạn thẳng. Mỗi một đoạn thẳng giao với ít nhất n đoạn thẳng khác. Chứng minh rằng tồn tại một đoạn thẳng giao với tất cả các đoạn thẳng còn lại. 3. Trong mặt phẳng cho n > 1 điểm. Hai người chơi lần lượt nối một cặp điểm chưa được nối bằng một véc-tơ với một trong hai chiều. Nếu sau nước đi của người nào đó tổng các véc tơ đã vẽ bằng 0 thì người thứ hai thắng; nếu cho đến khi không còn vẽ được véc tơ nào nữa mà tổng vẫn chưa có lúc nào bằng 0 thì người thứ nhất thắng. Hỏi ai là người thắng cuộc nếu chơi đúng? 4. Giả sử n là số nguyên dương sao cho 2n + 1 chia hết cho n. a) Chứng minh rằng nếu n > 1 thì n chia hết cho 3; b) Chứng minh rằng nếu n > 3 thì n chia hết cho 9; c) Chứng minh rằng nếu n > 9 thì n chia hết cho 27 hoặc 19; d) Chứng minh rằng nếu n chia hết cho số nguyên tố p 3 thì p 19; e)* Chứng minh rằng nếu n chia hết cho số nguyên tố p, trong đó p 3 và p 19 thì p 163. Phương pháp phản ví dụ nhỏ nhất Trong việc chứng minh một số tính chất bằng phương pháp phản chứng, ta có thể có thêm một số thông tin bổ sung quan trọng nếu sử dụng phản ví dụ nhỏ nhất. Ý tưởng là để chứng minh một tính chất A cho một cấu hình P, ta xét một đặc trưng f(P) của P là một hàm có giá trị nguyên dương. Bây giờ giả sử tồn tại một cấu hình P không có tính chất A, khi đó sẽ tồn tại một cấu hình P0 không có tính chất A với f(P0) nhỏ nhất. Ta sẽ tìm cách suy ra điều mâu thuẫn. Lúc này, ngoài việc chúng ta có cấu hình P0 không có tính chất A, ta còn có mọi cấu hình P với f(P) < f(P0) đều có tính chất A. Ví dụ 3. Cho ngũ giác lồi ABCDE trên mặt phẳng toạ độ có toạ độ các đỉnh đều nguyên. a) Chứng minh rằng tồn tại ít nhất 1 điểm nằm trong hoặc nằm trên cạnh của ngũ giác (khác với A, B, C, D, E) có toạ độ nguyên. b) Chứng minh rằng tồn tại ít nhất 1 điểm nằm trong ngũ giác có toạ độ nguyên. c) Các đường chéo của ngũ giác lồi cắt nhau tạo ra một ngũ giác lồi nhỏ A1B1C1D1E1 bên trong. Chứng minh rằng tồn tại ít nhất 1 điểm nằm trong hoặc trên biên ngũ giác lồi A1B1C1D1E1. Câu a) có thể giải quyết dễ dàng nhờ nguyên lý Dirichlet: Vì có 5 điểm nên tồn tại ít nhất 2 điểm X, Y mà cặp toạ độ (x, y) của chúng có cùng tính chẵn lẻ (ta chỉ có 4 trường hợp (chẵn, chẵn), (chẵn, lẻ), (lẻ, chẵn) và (lẻ, lẻ)). Trung điểm Z của XY chính là điểm cần tìm. Sang câu b) lý luận trên đây chưa đủ, vì nếu XY không phải là đường chéo mà là cạnh thì Z có thể sẽ nằm trên biên. Ta xử lý tình huống này như sau. Để ý rằng nếu XY là một cạnh, chẳng hạn là cạnh AB thì ZBCDE cũng là một ngũ giác lồi có các đỉnh có toạ độ đều nguyên và ta có thể lặp lại lý luận nêu trên đối với ngũ giác ZBCDE, … Ta có thể dùng đơn biến để chứng minh quá trình này không thể kéo dài mãi, và đến một lúc nào đó sẽ có 1 ngũ giác có điểm nguyên nằm trong. Tuy nhiên, ta có thể trình bày lại lý luận này một cách gọn gàng như sau: Giả sử tồn tại một ngũ giác nguyên mà bên trong không chứa một điểm nguyên nào (phản ví dụ). Trong tất cả các ngũ giác như vậy, chọn ngũ giác ABCDE có diện tích nhỏ nhất (phản ví dụ nhỏ nhất). Nếu có nhiều ngũ giác như vậy thì ta chọn một trong số chúng. Theo lý luận đã trình bày ở câu a), tồn tại hai đỉnh X, Y có cặp toạ độ cùng tính chẵn lẻ. Trung điểm Z của XY sẽ có toạ độ nguyên. Vì bên trong ngũ giác ABCDE không có điểm nguyên nào nên XY phải là một cạnh nào đó. Không mất tính tổng quát, giả sử đó là AB. Khi đó ngũ giác ZBCDE có toạ độ các đỉnh đều nguyên và có diện tích nhỏ hơn diện tích ngũ giác ABCDE. Do tính nhỏ nhất của ABCDE (phản ví dụ nhỏ nhất phát huy tác dụng!) nên bên trong ngũ giác ZBCDE có 1 điểm nguyên T. Điều này mâu thuẫn vì T cũng nằm trong ngũ giác ABCDE. Phản ví dụ nhỏ nhất cũng là cách rất tốt để trình bày một chứng minh quy nạp (ở đây thường là quy nạp mạnh), để tránh những lý luận dài dòng và thiếu chặt chẽ. Ví dụ 4. Chứng minh rằng nếu a, b là các số nguyên dương nguyên tố cùng nhau thì tồn tại các số nguyên x, y sao cho ax + by = 1. Giải. Giả sử khẳng định đề bài không đúng, tức là tồn tại hai số nguyên dương a, b nguyên tố cùng nhau sao cho không tồn tại x, y nguyên sao cho ax + by = 1. Gọi a0, b0 là một cặp số như vậy với a0 + b0 nhỏ nhất (phản ví dụ nhỏ nhất). Vì (a0, b0) = 1 và (a0, b0) ≠ (1, 1) (do 1.0 + 1.1 = 1) nên a0 ≠ b0. Không mất tính tổng quát, có thể giả sử a0 > b0. Dễ thấy (a0-b0, b0) = (a0, b0) = 1. Do a0 – b0 + b0 = a0 < a0 + b0 nên do tính nhỏ nhất của phản ví dụ, ta suy ra (a0-b0, b0) không là phản ví dụ, tức là tồn tại x, y sao cho (a0-b0)x + b0y = 1. Nhưng từ đây thì a0x + b0(y-x) = 1. Mâu thuẫn đối với điều giả sử. Vậy điều giả sử là sai và bài toán được chứng minh. Bài tập 5. Giải phần c) của ví dụ 3. 6. Trên mặt phẳng đánh dấu một số điểm. Biết rằng 4 điểm bất kỳ trong chúng là đỉnh của một tứ giác lồi. Chứng minh rằng tất cả các điểm được đánh dấu là đỉnh của một đa giác lồi. Nguyên lý cực hạn và bất đẳng thức Nguyên lý cực hạn thường được áp dụng một cách hiệu quả trong các bất đẳng thức có tính tổ hợp, dạng chứng minh tồn tại k số từ n số thỏa mãn một điều kiện này đó. Ví dụ 5. (Moscow MO 1984) Trên vòng tròn người ta xếp ít nhất 4 số thực không âm có tổng bằng 1. Chứng minh rằng tổng tất cả các tích các cặp số kề nhau không lớn hơn . Giải. Ta cần chứng minh rằng với mọi n ≥ 4 số thực không âm а1, ..., аn, có tổng bằng 1, ta có bất đẳng thức a1a2 + a2a3 + ... + an - 1an + ana1 ≤ 1/4. Với n chẵn n (n = 2m) điều này có thể chứng minh dễ dàng: đặt a1 + a3 + ... + a2m - 1 = a; khi đó, rõ ràng, a1a2 + a2a3 + ... + an - 1an + ana1 ≤ (a1 + a3 + ... + a2m−1) × (a2 + a4 + ... + a2m) = a(1 − a) ≤ 1/4. Giả sử n lẻ và ak – là số nhỏ nhất trong các số đã cho. (Để thuận tiện, ta giả sử 1 < k < n − 1 – điều này không làm mất tính tổng quát khi n ≥ 4.) Đặt bi = аi, với i = 1,..., k − 1, bk = ak + ak + 1 và bi = ai + 1 với i = k + 1,..., n − 1. Áp dụng bất đẳng thức của chúng ta cho các số b1,..., bn - 1, ta được: a1a2 + ... + ak - 2ak - 1 + (ak - 1 + ak + 2) bk + ak + 2ak + 3 + ... + an - 1an + ana1 ≤ 1/4. Cuối cùng, ta sử dụng bất đẳng thức ak - 1ak + akak + 1 + ak + 1ak + 2 ≤ ak - 1ak + ak - 1ak + 1 + ak + 1ak + 2 ≤ (ak - 1 + ak + 2) bk. để suy ra điều phải chứng minh. Đánh giá trên đây là tốt nhất; dấu bằng xảy ra khi 2 trong n số bằng 1/2, còn các số còn lại bằng 0. Ví dụ 6. Cho n 4 và các số thực phân biệt a1, a2, …, an thoả mãn điều kiện n a i 1 n i 0, ai2 1. i 1 Chứng minh rằng tồn tại 4 số a, b, c, d thuộc {a1, a2, …, an} sao cho n a b c nabc ai3 a b d nabd . i 1 Giải. Nếu a ≤ b ≤ c là ba số nhỏ nhất trong các ai thì với mọi i = 1, 2, …, n ta có bất đẳng thức (ai – a)(ai – b)(ai – c) ≥ 0 Suy ra ai3 (a b c)ai2 (ab bc ca)ai abc với mọi i = 1, 2, …,n. Cộng tất cả các bất đẳng thức này, với chú ý n a i 1 3 i n n i 1 i 1 ai 0, ai2 1. ta được a b c nabc . Bây giờ nếu chọn d là số lớn nhất trong các ai thì ta có (ai – a)(ai – b)(ai – d) ≤ 0 với mọi i = 1, 2, …, n. Và cũng thực hiện tương tự như trên, ta suy ra bất đẳng thức vế phải của bất đẳng thức kép cần chứng minh. Ví dụ 7. Tổng bình phương của một 100 số thực dương lớn hơn 10000. Tổng của chúng nhỏ hơn 300. Chứng minh rằng tồn tại 3 số trong chúng có tổng lớn hơn 100. Giải. Giả sử 100 số đó là C1 ≥ C2 ≥...≥ C100 > 0. Nếu như C1 ≥ 100, thì C1 + C2 + C3 > 100. Do đó ta có thể giả sử rằng C1 < 100. Khi đó 100 - C1 > 0, 100 - C2 > 0, C1 - C2 ≥ 0 и C1 - C3 ≥ 0, vì vậy 100(C1 + C2 + C3) ≥ 100(C1 + C2 + C3) - (100 - C1)(C1 - C3) - (100 - C2)(C2 - C3) = = C12 + C22 + C3(300 - C1 - C2) > > C12 + C22 + C3(C3 + C4 + ... + C100) ≥ ≥ C12 + C22 + C32 + ... + C1002 > 10000. Suy ra, C1 + C2 + C3 > 100. Bài tập 7. Trong mỗi ô của bảng 2 x n ta viết các số thực dương sao cho tổng các số của mỗi cột bằng 1. Chứng minh rằng ta có thể xoá đi ở mỗi cột một số sao cho ở mỗi hàng, tổng của các số còn lại không vượt quá n 1 . 4 8. 40 tên trộm chia 4000 euro. Một nhóm gồm 5 tên trộm được gọi là nghèo nếu tổng số tiền mà chúng được chia không quá 500 euro. Hỏi số nhỏ nhất các nhóm trộm nghèo trên tổng số tất cả các nhóm 5 tên trộm bằng bao nhiêu? Nguyên lý cực hạn và phương trình Diophant Trong phần này, ta trình bày chi tiết ba ví dụ áp dụng nguyên lý cực hạn trong phương trình Fermat, phương trình Pell và phương trình dạng Markov. Ví dụ 8. Chứng minh rằng phương trình x4 + y4 = z2 (1) không có nghiệm nguyên dương. Giải. Giả sử ngược lại, phương trình (1) có nghiệm nguyên dương, và (x, y, z) là nghiệm của (1) với z nhỏ nhất. (1) Dễ thấy x2,y2,z đôi một nguyên tố cùng nhau (2) Từ nghiệm của phương trình Pythagore, ta có tồn tại p, q sao cho x2 = 2pq y2 = p2 - q2 z = p2 + q2 (3) Từ đây, ta lại có một bộ ba Pythagore khác, vì y2 + q2 = p2. (4) Như vậy, tồn tại a,b sao cho q = 2ab y = a2 - b2 p = a2 + b2 a,b nguyên tố cùng nhau (5) Kết hợp các phương trình này, ta được: x2 = 2pq = 2(a2 + b2)(2ab) = 4(ab)(a2 + b2) (6) Vì ab và a2 + b2 nguyên tố cùng nhau, ta suy ra chúng là các số chính phương. (7) Như vậy a2 + b2 = P2 và a = u2, b = v2. Suy ra P2 = u4 + v4. (8) Nhưng bây giờ ta thu được điều mâu thuẫn với tính nhỏ nhất của z vì: P2 = a2 + b2 = p < p2 + q2 = z < z2. (9) Như vậy điều giả sử ban đầu là sai, suy ra điều phải chứng minh. Phương pháp trình bày ở trên còn được gọi là phương pháp xuống thang. Đây có lẽ là phương pháp mà Fermat đã nghĩ tới khi viết trên lề cuốn sách của Diophant những dòng chữ mà sau này được gọi là định lý lớn Fermat và đã làm điên đầu bao nhiêu thế hệ những nhà toán học. Ví dụ 9. Tìm tất cả các cặp đa thức P(x), Q(x) thỏa mãn phương trình P2(x) = (x2-1)Q2(x) + 1 (1) Giải. Không mất tính tổng quát, ta chỉ cần tìm nghiệm trong tập các đa thức có hệ số khởi đầu dương. Nếu ( x x 2 1) n Pn ( x) x 2 1Qn ( x) (2) thì ( x x 2 1) n Pn ( x) x 2 1Qn ( x) (3) Nhân (2) và (3) vế theo vế, ta được 1 ( x x 2 1) n ( x x 2 1) n ( Pn ( x) x 2 1Qn ( x))( Pn ( x) x 2 1Qn ( x)) Pn2 ( x) ( x 2 1)Qn2 ( x) Suy ra cặp đa thức Pn(x), Qn(x) xác định bởi (2) (và (3)!) là nghiệm của (1). Ta chứng minh đây là tất cả các nghiệm của (1). Thật vậy, giả sử ngược lại, tồn tại cặp đa thức P(x), Q(x) không có dạng Pn(x), Qn(x) thỏa mãn (1). Ta xét cặp đa thức (P, Q) như vậy với degQ nhỏ nhất. Đặt ( P ( x) x 2 1Q( x))( x x 2 1) P * ( x) x 2 1Q * ( x) (4) Thì rõ ràng ( P ( x) x 2 1Q( x))( x x 2 1) P * ( x) x 2 1Q * ( x) Suy ra (P*, Q*) cũng là nghiệm của (1). Khai triển (4), ta thu được P*(x) = xP(x) – (x2-1)Q(x), Q*(x) = xQ(x) – P(x). Chú ý là từ (1) ta suy ra (P(x) – xQ(x))(P(x)+xQ(x)) = - Q2(x) + 1. Vì P(x) và Q(x) đều có hệ số khởi đầu > 0 và degP = degQ + 1 nên ta có deg(P(x)+xQ(x)) = degQ + 1. Từ đây, do deg(Q2(x) + 1) ≤ 2deg(Q) nên ta suy ra deg(Q*(x)) ≤ deg(Q) – 1 < deg Q. Như vậy, theo cách chọn cặp (P, Q) thì tồn tại n sao cho (P*, Q*) = (Pn, Qn). Nhưng khi đó từ (4) suy ra P ( x) x 2 1Q( x) ( P * ( x) x 2 1Q * ( x))( x x 2 1) ( x x 2 1) n ( x x 2 1) ( x x 2 1) n 1 Suy ra (P, Q) = (Pn+1,Qn+1), mâu thuẫn. Vậy điều giả sử là sai và ta có điều phải chứng minh. Ví dụ 10. Tìm tất cả các giá trị k sao cho phương trình (x+y+z)2 = kxyz có nghiệm nguyên dương. Giải. Giả sử k là một giá trị cần tìm. Gọi x0, y0, z0 là nghiệm nguyên dương của phương trình (x+y+z)2 = kxyz (1) có x0 + y0 + z0 nhỏ nhất. Không mất tính tổng quát, có thể giả sử x0 ≥ y0 ≥ z0. Viết lại (1) dưới dạng x2 – (kyz – 2y – 2z)x + (y+z)2 = 0 ta suy ra x0 là nghiệm của phương trình bậc hai x2 – (ky0z0 – 2y0 – 2z0)x + (y0+z0)2 = 0 (2) Theo định lý Viet x1 = ky0z0 – 2y0 – 2z0 – x0 = (y0+z0)2/x0 cũng là nghiệm của (2). Từ đó (x1, y0, z0) là nghiệm của (1). Cũng từ các công thức trên, ta suy ra x1 nguyên dương. Tức là (x1, y0, z0) là nghiệm nguyên dương của (1). Từ tính nhỏ nhất của x0 + y0 + z0 ta x1 ≥ x0. Từ đây ta có ky0z0 – 2y0 – 2z0 – x0 ≥ x0 và (y0+x0)2/x0 ≥ x0 Từ bất đẳng thức thứ hai ta suy ra y0 + z0 ≥ x0. Từ đó, áp dụng vào bất đẳng thức thứ nhất, ta được ky0z0 ≥ 4x0. Cuối cùng, chia hai vế của đẳng thức x02 + y02 + z02 + 2x0y0 + 2y0z0 + 2z0x0 = kx0y0z0 cho x0y0z0, ta được x0 y z 2 2 2 0 0 k. y0 z0 x0 z0 x0 y0 z0 x0 y0 Từ đó suy ra 32 k 1 1 2 2 2 k , tức là k . Suy ra k ≤ 10. 3 4 Chú ý nếu x0 = 1 thì y0 = z0 = 1 suy ra k = 9. Nếu k ≠ 9 thì x0 ≥ 2 và đánh giá ở trên trở thành k 1 26 1 2 1 2 k suy ra k , suy ra k ≤ 8 4 2 3 Vậy giá trị k = 10 bị loại. Với k = 1 phương trình có nghiệm, chẳng hạn (9, 9, 9) Với k = 2 phương trình có nghiệm, chẳng hạn (4, 4, 8) Với k = 3 phương trình có nghiệm, chẳng hạn (3, 3, 3) Với k = 4 phương trình có nghiệm, chẳng hạn (2, 2, 4) Với k = 5 phương trình có nghiệm, chẳng hạn (1, 4, 5) Với k = 6 phương trình có nghiệm, chẳng hạn (1, 2,3) Với k = 8 phương trình có nghiệm, chẳng hạn (1, 1, 2) Với k = 9 phương trình có nghiệm, chẳng hạn (1, 1, 1) Ngoài ra, ta có thể chứng minh được rằng trường hợp k = 7 phương trình không có nghiệm nguyên dương (xin được dành cho bạn đọc). Vậy các giá trị k cần tìm là k = 1, 2, 3, 4, 5, 6, 8, 9. Ví dụ 11. (CRUX, Problem 1420) Nếu a, b, c là các số nguyên dương sao cho 0 < a2 + b2 – abc ≤ c Chứng minh rằng a2 + b2 – abc là số chính phương. Giải. Giả sử ngược lại rằng tồn tại các số nguyên dương a, b, c sao cho 0 < a2 + b2 – abc ≤ c và k = a2 + b2 – abc (1) không phải là số chính phương. Bây giờ ta cố định k và c và xét tập hợp tất cả các cặp số nguyên dương (a, b) thỏa mãn phương trình (1), tức là ta xét S(c, k) = {(a, b) (N*)2: a2 + b2 – abc = k} This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.Tìm kiếm
Chủ đề
Lý thuyết Dow Đồ án tốt nghiệp Atlat Địa lí Việt Nam Mẫu sơ yếu lý lịch Đề thi mẫu TOEIC Bài tiểu luận mẫu Giải phẫu sinh lý Tài chính hành vi Thực hành Excel Hóa học 11 Trắc nghiệm Sinh 12 Đơn xin việc adblock Bạn đang sử dụng trình chặn quảng cáo?Nếu không có thu nhập từ quảng cáo, chúng tôi không thể tiếp tục tài trợ cho việc tạo nội dung cho bạn.
Tôi hiểu và đã tắt chặn quảng cáo cho trang web nàyTừ khóa » Nguyên Lý Cực Hạn Trong Tổ Hợp
-
Nguyên Lý Cực Hạn – Wikipedia Tiếng Việt
-
Nguyên Lý Drichlet Và Nguyên Lý Cực Hạn Trong Toán Tổ Hợp
-
Nguyên Lí Cực Hạn – Một Số Bài Toán Tổ Hợp Và Hình Học | CMaths
-
Nguyên Lý Cực Hạn - THƯ VIỆN TOÁN
-
Nguyên Lý Dirichlet Và Nguyên Lý Cực Hạn Trong Toán Tổ Hợp
-
Các Bài Toán Sử Dụng Nguyên Lý Cực Hạn
-
Nguyên Lý DIRICHLET Và Nguyên Lý CỰC HẠN Trong Giải Toán Tổ Hợp
-
Skkn Nguyên Lý Cực Hạn Trong Các Bài Toán Tổ Hợp - Tài Liệu Text
-
Giải Bài Toán Bằng đại Lượng Cực Biên-Phần 1
-
Nguyên Lí Cực Hạn(Thầy Trần Nam Dũng) - PDFCOFFEE.COM
-
Bài 12. Nguyên Lý Cực Hạn Trong Hình Học Tổ Hợp (Phần 02) - Hocmai
-
Các Bài Toán Sử Dụng Nguyên Lý Cực Hạn - Mobitool