Những Hằng đẳng Thức đáng Nhớ đầy đủ, Chi Tiết | Toán Lớp 8
Có thể bạn quan tâm
- Siêu sale sách Toán - Văn - Anh Vietjack 25-11 trên Shopee mall
Bài viết Những hằng đẳng thức đáng nhớ lớp 8 hay, chi tiết giúp bạn nắm vững kiến thức trọng tâm Những hằng đẳng thức đáng nhớ.
Những hằng đẳng thức đáng nhớ đầy đủ, chi tiết
Bài giảng: Bài 3: Những hằng đẳng thức đáng nhớ - Cô Phạm Thị Huệ Chi (Giáo viên VietJack)
A. Lý thuyết
1. Bình phương của một tổng
Quảng cáoVới A, B là các biểu thức tùy ý, ta có: ( A + B )2 = A2 + 2AB + B2.
Ví dụ:
a) Tính ( a + 3 )2.
b) Viết biểu thức x2 + 4x + 4 dưới dạng bình phương của một tổng.
Lời giải:
a) Ta có: ( a + 3 )2 = a2 + 2.a.3 + 32 = a2 + 6a + 9.
b) Ta có x2 + 4x + 4 = x2 + 2.x.2 + 22 = ( x + 2 )2.
2. Bình phương của một hiệu
Với A, B là các biểu thức tùy ý, ta có: ( A - B )2 = A2 - 2AB + B2.
Ví dụ:
a) Tính ( 5x -y )2
b) Viết biểu thức 4x2 - 4x + 1 dưới dạng bình phương của một hiệu
Lời giải:
Quảng cáoa) Ta có ( 5x -y )2 = ( 5x )2 - 2.5x.y + ( y )2 = 25x2 - 10xy + y2.
b) Ta có 4x2 - 4x + 1 = ( 2x )2 - 2.2x.1 + 1 = ( 2x - 1 )2.
3. Hiệu hai bình phương
Với A, B là các biểu thức tùy ý, ta có: A2 - B2 = ( A - B )( A + B ).
Ví dụ:
a) Tính ( x - 2 )( x + 2 ).
b) Tính 56.64
Lời giải:
a) Ta có: ( x - 2 )( x + 2 ) = ( x )2 - 22 = x2 - 4.
b) Ta có: 56.64 = ( 60 - 4 )( 60 + 4 ) = 602 - 42 = 3600 - 16 = 3584.
4. Lập phương của một tổng
Quảng cáoVới A, B là các biểu thức tùy ý, ta có: ( A + B )3 = A3 + 3A2B + 3AB2 + B3.
Ví dụ:
a) Tính ( x + 2 )3.
b) Viết biểu thức x3 + 3x2 + 3x + 1 dưới dạng lập phương của một tổng.
Lời giải:
a) Ta có ( x + 2 )3 = x3 + 3.x2.2 + 3x.22 + 23 = x3 + 6x2 + 12x + 8.
b) Ta có x3 + 3x2 + 3x + 1 = x3 + 3x2.1 + 3x.12 + 13 = ( x + 1 )3.
5. Lập phương của một hiệu.
Quảng cáoVới A, B là các biểu thức tùy ý, ta có: ( A - B )3 = A3 - 3A2B + 3AB2 - B3.
Ví dụ :
a) Tính ( 2x - 1 )3.
b) Viết biểu thức x3 - 6x2y + 12xy2 - 8y3 dưới dạng lập phương của một hiệu.
Lời giải:
a) Ta có: ( 2x - 1 )3 = ( 2x )3 - 3.( 2x )2.1 + 3( 2x ).12 - 13 = 8x3 - 12x2 + 6x - 1
b) Ta có : x3 - 6x2y + 12xy2 - 8y3 = ( x )3 - 3.x2.2y + 3.x.( 2y )2 - ( 2y )3 = ( x - 2y )3
6. Tổng hai lập phương
Với A, B là các biểu thức tùy ý, ta có: A3 + B3 = ( A + B )( A2 - AB + B2 ).
Chú ý: Ta quy ước A2 - AB + B2 là bình phương thiếu của hiệu A - B.
Ví dụ:
a) Tính 33 + 43.
b) Viết biểu thức ( x + 1 )( x2 - x + 1 ) dưới dạng tổng hai lập phương.
Lời giải:
a) Ta có: 33 + 43 = ( 3 + 4 )( 32 - 3.4 + 42 ) = 7.13 = 91.
b) Ta có: ( x + 1 )( x2 - x + 1 ) = x3 + 13 = x3 + 1.
7. Hiệu hai lập phương
Với A, B là các biểu thức tùy ý, ta có: A3 - B3 = ( A - B )( A2 + AB + B2 ).
Chú ý: Ta quy ước A2 + AB + B2 là bình phương thiếu của tổng A + B.
Ví dụ:
a) Tính 63 - 43.
b) Viết biểu thức ( x - 2y )( x2 + 2xy + 4y2 ) dưới dạng hiệu hai lập phương
Lời giải:
a) Ta có: 63 - 43 = ( 6 - 4 )( 62 + 6.4 + 42 ) = 2.76 = 152.
b) Ta có : ( x - 2y )( x2 + 2xy + 4y2 ) = ( x )3 - ( 2y )3 = x3 - 8y3.
B. Bài tập tự luyện
Bài 1: Tính giá trị của các biểu thức sau:
Lời giải:
a) Ta có:
(áp dụng hằng đẳng thức a2 - b2 = ( a + b )( a - b ) )
Vậy A = 25/47.
b) Ta có
(áp dụng hằng đẳng thức ( a + b )2 = a2 + 2ab + b2; ( a - b )2 = a2 - 2ab + b2 )
Vậy B = 1.
Bài 2: Tìm x biết
a) ( x - 3 )( x2 + 3x + 9 ) + x( x + 2 )( 2 - x ) = 0.
b) ( x + 1 )3 - ( x - 1 )3 - 6( x - 1 )2 = - 10.
Lời giải:
a) Áp dụng các hằng đẳng thức ( a - b )( a2 + ab + b2 ) = a3 - b3.
( a - b )( a + b ) = a2 - b2.
Khi đó ta có ( x - 3 )( x2 + 3x + 9 ) + x( x + 2 )( 2 - x ) = 0.
⇔ x3 - 33 + x( 22 - x2 ) = 0 ⇔ x3 - 27 + x( 4 - x2 ) = 0
⇔ x3 - x3 + 4x - 27 = 0
⇔ 4x - 27 = 0 ⇔ x = 27/4.
Vậy giá trị x cần tìm là x= 27/4 .
b) Áp dụng hằng đẳng thức ( a - b )3 = a3 - 3a2b + 3ab2 - b3
( a + b )3 = a3 + 3a2b + 3ab2 + b3
( a - b )2 = a2 - 2ab + b2
Khi đó ta có: ( x + 1 )3 - ( x - 1 )3 - 6( x - 1 )2 = - 10.
⇔ ( x3 + 3x2 + 3x + 1 ) - ( x3 - 3x2 + 3x - 1 ) - 6( x2 - 2x + 1 ) = - 10
⇔ 6x2 + 2 - 6x2 + 12x - 6 = - 10
⇔ 12x = - 6 ⇔ x = - 1/2.
Vậy giá trị x cần tìm là x= - 1/2
Bài giảng: Bài 4: Những hằng đẳng thức đáng nhớ (tiếp) - Cô Vương Thị Hạnh (Giáo viên VietJack)
Xem thêm các phần lý thuyết, các dạng bài tập Toán lớp 8 có đáp án chi tiết hay khác:
- Bài tập Những hằng đẳng thức đáng nhớ
- Lý thuyết Những hằng đẳng thức đáng nhớ
- Lý thuyết Những hằng đẳng thức đáng nhớ (tiếp)
- Lý thuyết Những hằng đẳng thức đáng nhớ (tiếp)
Xem thêm các loạt bài Để học tốt Toán lớp 8 hay khác:
- Giải bài tập Toán 8
- Giải sách bài tập Toán 8
- Top 75 Đề thi Toán 8 có đáp án
- Tài liệu cho giáo viên: Giáo án, powerpoint, đề thi giữa kì cuối kì, đánh giá năng lực, thi thử THPT, HSG, chuyên đề, bài tập cuối tuần..... độc quyền VietJack, giá hợp lí
Tủ sách VIETJACK shopee lớp 6-8 cho phụ huynh và giáo viên (cả 3 bộ sách):
- Trọng tâm Toán, Anh, KHTN lớp 6 (303 trang - từ 99k)
- Trọng tâm Toán, Anh, KHTN lớp 7 (266 trang - từ 99k)
- Trọng tâm Toán, Anh, KHTN lớp 8 (302 trang - từ 99k)
ĐỀ THI, GIÁO ÁN, SÁCH LUYỆN THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 8
Bộ giáo án, bài giảng powerpoint, đề thi, sách dành cho giáo viên và gia sư dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official
Tổng đài hỗ trợ đăng ký : 084 283 45 85
Từ khóa » Cách Tìm X Lớp 8 Hằng đẳng Thức
-
TÌM X BẰNG PHƯƠNG PHÁP DÙNG HẰNG ĐẲNG THỨC ĐƯA VỀ ...
-
TOÁN LỚP 8-TÌM X ÁP DỤNG BẨY HẰNG ĐẲNG THỨC ĐÁNG NHỚ
-
TOÁN LỚP 8-TÌM X ÁP DỤNG BẨY HẰNG ĐẲNG THỨC ĐÁNG NHỚ
-
Các Dạng Bài Tập áp Dụng 7 Hằng đẳng Thức Và Ví Dụ - Toán Lớp 8
-
Tìm X Lớp 8 Những Hằng đẳng Thức đáng Nhớ - Sáng Tạo Xanh
-
Tìm X ( Những Hằng đẳng Thức đáng Nhớ) - HOCMAI Forum
-
Tìm X Lớp 8 Hằng đẳng Thức
-
[Toán 8] Tìm X. | Bài Tập Toán THCS
-
9 Dạng Toán ứng Dụng 7 Hằng đẳng Thức đáng Nhớ - Toán Lớp 8
-
Hằng Đẳng Thức Đáng Nhớ - Kiến Thức Quan Trọng Cần Nhớ
-
Bài Tập Hằng đẳng Thức Lớp 8 Ôn Tập Toán 8
-
7 Hằng Đẳng Thức Đáng Nhớ Và Hệ Quả Lớp 8
-
Cách Giải Bài Toán Dạng: Vận Dụng Một Số Hằng đẳng Thức đáng ...
-
Những Hằng đẳng Thức đáng Nhớ Và Cách Giải