Ôn Chương 3 – Hình Học 12 PHƯƠNG PHÁP TỌA ĐỘ TRONG ...

1. Sơ đồ các dạng toán viết phương trình đường thẳng, mặt phẳng, mặt cầu

Ôn Chương 3 – Hình học 12 PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN

2. Sơ đồ các công thức định lượng của phương pháp tọa độ trong không gian

Ôn Chương 3 – Hình học 12 PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN

Bài tập minh họa

Bài tập 1:

Trong không gian với hệ tọa độ Oxyz , cho A(0;-3;-1) và B(-4;1;-3) và mặt phẳng \((P):x-2y+2z-7=0\). a) Viết phương trình mặt phẳng (Q) đi qua gốc tọa độ, song song với AB và vuông góc với (P). b) Lập phương trình mặt cầu nhận đoạn thẳng AB là đường kính.

Lời giải:

a) Ta có \(\overrightarrow{AB}=(-4;4;-2),\vec{n}=(1;-2;2)\) là véc tơ pháp tuyến của mặt phẳng (P). \(\left [ \overrightarrow{AB};\vec{n} \right ]=(4;6;4)\) (Q) là mặt phẳng đi qua gốc tọa độ O(0;0;0), (Q) song song với AB và vuông góc với mặt phẳng (P) suy ra mặt phẳng (Q) nhận \(\overrightarrow {{n_{(Q)}}} = \frac{1}{2}\left[ {\overrightarrow {AB} ;\vec n} \right] = (2;3;2)\) làm véctơ pháp tuyến. Vậy phương trình mặt phẳng (Q) là: \(2x+3y+2z=0.\) b. \(\overrightarrow{AB}=(-4;4;-2)\Rightarrow AB=\sqrt{16+16+4}=6\) Trung điểm AB là I(-2;-1;-2). Mặt cầu (S) có tâm I, bán kính \(R=\frac{AB}{2}=3\Rightarrow (S):(x+2)^2+(y+1)^2+(z+2)^2=9\).

Bài tập 2: 

Cho mặt cầu \((S): x^2+y^2+z^2-2x+6y+4z-22=0\) và \((\alpha ):x+2y-2z-8=0\). CRM: \((\alpha )\) cắt (S) theo một đường tròn. Xác định tâm, bán kính đường tròn đó.

Lời giải:

Ôn Chương 3 – Hình học 12 PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN

Nhận xét: Tâm đường tròn giao tuyến của mặt cầu S(I;R) và \((\alpha )\) là hình chiếu của I trên \((\alpha )\) với \(r^2+d^2(I;(\alpha ))=R^2\).

  • \((S): (x-1)^2+(y+3)^2+(z+2)^2=36\)

Mặt cầu (S) có tâm I(1;-3;-2), bán kính R = 6. \(d(I;(\alpha ))=\frac{\left | 1-6+4-8 \right |}{\sqrt{1^2+2^2+(-2)^2}}=\frac{9}{3}=3<R\) Vậy \((\alpha )\) cắt mặt cầu theo 1 đường tròn.

  • Xác định tâm của H của đường tròn giao tuyến

Ta có H là hình chiếu của I trên \((\alpha )\). Đường thẳng \(\Delta\) đi qua I và vuông góc với  \((\alpha )\), tức là nhận \(\vec{n_\alpha }=(1;2;-2)\) làm một VTCP có phương trình là: \(\Delta \left\{\begin{matrix} x=1+t\\ y=-3+2t\\ z=-2-2t \end{matrix}\right.\) \(H =\Delta \cap (\alpha )\) \(H\in \Delta \Rightarrow H(1+t;-3+2t;-2-2t)\) \(H\in (\alpha ) \Rightarrow 1+t+2(-3+2t)-2(-2-2t)-8=0\) \(\Leftrightarrow 9t-9=0\Leftrightarrow t=1\) Suy ra tọa độ H(2;-1;-4).

Bán kính đường trình giao tuyến: \(r^2=R^2-IH^2=36-9=27.\)

Vậy \(r=3\sqrt{3}.\)

Bài tập 3:

Cho đường thẳng \(d:\frac{x-12}{4}=\frac{y-9}{3}=\frac{z-1}{1}\) và \((P):3x+5y-z-2=0\) a) Tìm tọa độ giao điểm A của d và (P). b) Viết phương trình (Q) đi qua M0(1;2;-1) và vuông góc với d. c) Tìm tọa độ B’ đối xứng với B(1;0;-1) qua (P).

Lời giải:

a) \(A=d\cap (P)\)

\(A\in d\left\{\begin{matrix} x=12+4t\\ y=9+3t\\ z=1+t \end{matrix}\right. \Rightarrow A(12+4t;9+3t;1+t)\) \(A\in (P)\) nên \(3(12+4t)+5(9+3t)-(1+t)-2=0\) \(\Leftrightarrow 26t +78t=0\Leftrightarrow t=-3\) Vậy tọa độ là A(0;0;-2). b) \((Q)\perp d\) nên (Q) nhận \(\vec{u_d}=(4;3;1)\) làm một VTPT. Phương trình mặt phẳng (Q) là \((Q):4(x-1)+3(y-2)+1(z+1)=0\) hay \(4x+3y+z-9=0.\) Ôn Chương 3 – Hình học 12 PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN c) Viết phương trình \(\Delta\) đi qua B và vuông góc (P) \(\Delta\) \(\perp\) (P) nên \(\Delta\) nhận \(\vec{n_P}=(3;5;-1)\) làm một VTCP. Phương trình tham số của \(\Delta: \left\{\begin{matrix} x=1+3t\\ y=5t\\ z=-1-t \end{matrix}\right.\) Ôn Chương 3 – Hình học 12 PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN

H là hình chiếu của B trên (P) \(H=\Delta \cap (P)\) \(H\in \Delta \Rightarrow H(1+3t;5t;-1-t)\) \(H\in(P)\) nên \(3(1+3t)+25t+1+t-2=0\)

\(\Leftrightarrow 35t+2=0\) \(\Leftrightarrow t=-\frac{2}{35}\) \(H\left ( \frac{29}{35};-\frac{2}{7};-\frac{33}{35} \right )\) H là trung điểm BB’ nên: \(\left\{\begin{matrix} x_{B’}=2x_H-x_B=\frac{23}{35}\\ \\ y_{B’}=2y_H-y_B=-\frac{4}{7}\\ \\ z_{B’}=2z_H-z_B=\frac{2}{35} \end{matrix}\right.\) Vậy tọa độ \(B’ \left ( \frac{23}{35};-\frac{4}{7};\frac{2}{35} \right ).\)

Từ khóa » Sơ đồ Tư Duy Toán 12 Chương 3 Hình Học