Phân Phối Xác Suất Rời Rạc – Wikipedia Tiếng Việt

Bước tới nội dung

Nội dung

chuyển sang thanh bên ẩn
  • Đầu
  • 1 Tham khảo
  • Bài viết
  • Thảo luận
Tiếng Việt
  • Đọc
  • Sửa đổi
  • Sửa mã nguồn
  • Xem lịch sử
Công cụ Công cụ chuyển sang thanh bên ẩn Tác vụ
  • Đọc
  • Sửa đổi
  • Sửa mã nguồn
  • Xem lịch sử
Chung
  • Các liên kết đến đây
  • Thay đổi liên quan
  • Trang đặc biệt
  • Thông tin trang
  • Trích dẫn trang này
  • Lấy URL ngắn gọn
  • Tải mã QR
In và xuất
  • Tạo một quyển sách
  • Tải dưới dạng PDF
  • Bản để in ra
Tại dự án khác
  • Khoản mục Wikidata
Giao diện chuyển sang thanh bên ẩn Bách khoa toàn thư mở Wikipedia
Hàm khối xác suất của một phân phối xác suất rời rạc. Xác suất của các giá trị đơn (singleton) {1}, {3}, và {7} lần lượt là 0,2, 0,5, 0,3. Một tập hợp không chứa giá trị nào trong các điểm này có xác suất bằng 0.
Từ trên xuống dưới, hàm phân phối tích tũy của một phân phối xác suất rời rạc, phân phối xác suất liên tục, và một phân phối có cả một phần liên tục và một phần rời rạc.

Trong lý thuyết xác suất, một phân phối xác suất được gọi là rời rạc nếu nó được đặc trưng bởi một hàm khối xác suất (probability mass function). Khi đó, phân phối của một biến ngẫu nhiên X là rời rạc, và X được gọi là biến ngẫu nhiên rời rạc nếu

∑ u Pr ( X = u ) = 1 {\displaystyle \sum _{u}\Pr(X=u)=1}

khi u chạy trên tập tất cả các giá trị của X.

Nếu một biến ngẫu nhiên là rời rạc, thì tập hợp tất cả các giá trị mà nó có thể nhận với xác suất khác 0 là một tập hữu hạn hoặc vô hạn đếm được, vì tổng của số lượng không đếm được các số thực dương luôn tiến đến vô cùng.

Phân phối Poisson, phân phối Bernoulli, phân phối nhị thức, phân phối hình học, và phân phối nhị thức âm nằm trong số những phân phối xác suất rời rạc thông dụng nhất.

Tham khảo

[sửa | sửa mã nguồn]
Hình tượng sơ khai Bài viết liên quan đến toán học này vẫn còn sơ khai. Bạn có thể giúp Wikipedia mở rộng nội dung để bài được hoàn chỉnh hơn.
  • x
  • t
  • s
Lấy từ “https://vi.wikipedia.org/w/index.php?title=Phân_phối_xác_suất_rời_rạc&oldid=18139471” Thể loại:
  • Sơ khai toán học
  • Phân phối xác suất rời rạc
Thể loại ẩn:
  • Tất cả bài viết sơ khai

Từ khóa » Tổng Rời Rạc