Phân Tích độ Tin Cậy Cronbach's Alpha Trong SPSS - Phạm Lộc Blog
Có thể bạn quan tâm
Kiểm định độ tin cậy thang đo Cronbach's Alpha là gì và tại sao phải sử dụng đến nó? Trong nghiên cứu định lượng, việc đo lường các nhân tố lớn sẽ rất khó khăn và phức tạp, không thể chỉ sử dụng những thang đo đơn giản (chỉ dùng 1 câu hỏi qua sát đo lường) mà phải sử dụng các thang đo chi tiết hơn (dùng nhiều câu hỏi quan sát để đo lường nhân tố) để hiểu rõ được tính chất của nhân tố lớn.
Xem thêm:Hệ số Cronbach Alpha được sử dụng cho loại thang đo nào? Xem thêm:Chạy Cronbach Alpha cho từng nhóm hay cho tất cả một lượt?Do vậy, khi lập bảng câu hỏi nghiên cứu, chúng ta thường tạo các biến quan sát x1, x2, x3, x4, x5... là biến con của nhân tố A nhằm mục đích thay vì đi đo lường cả một nhân tố A tương đối trừu tượng và khó đưa ra kết quả chính xác thì chúng ta đi đo lường các biến quan sát nhỏ bên trong rồi suy ra tính chất của nhân tố.
Như vậy, khái niệm "thang đo" trong cụm kiểm định độ tin cậy thang đo ý muốn nói đến một tập hợp các biến quan sát con có khả năng đo được, thể hiện được tính chất của nhân tố mẹ. Các bạn không được hiểu lầm kiểm định thang đo ở đây là thang đo Likert nhé. Chi tiết hơn, mời bạn xem ở video bên dưới:
Tuy nhiên, không phải lúc nào tất cả các biến quan sát x1, x2, x3, x4, x5... chúng ta đưa ra để đo lường cho nhân tố A đều hợp lý, đều phản ánh được khái niệm, tính chất của A. Do vậy, cần phải có một công cụ giúp kiểm tra xem biến quan sát nào phù hợp, biến quan sát nào không phù hợp để đưa vào thang đo.
Kiểm định độ tin cậy thang đo Cronbach's Alpha là công cụ chúng ta cần. Công cụ này sẽ giúp kiểm tra xem các biến quan sát của nhân tố mẹ (nhân tố A) có đáng tin cậy hay không, có tốt không. Phép kiểm định này phản ánh mức độ tương quan chặt chẽ giữa các biến quan sát trong cùng 1 nhân tố. Nó cho biết trong các biến quan sát của một nhân tố, biến nào đã đóng góp vào việc đo lường khái niệm nhân tố, biến nào không. Kết quả Cronbach Alpha của nhân tố tốt thể hiện rằng các biến quan sát chúng ta liệt kê là rất tốt, thể hiện được đặc điểm của nhân tố mẹ, chúng ta đã có được một thang đo tốt cho nhân tố mẹ này.
2. Đo lường độ tin cậy bằng hệ số Cronbach’s Alpha
Trước tiên, chúng ta cần hiểu được khái niệm tính nhất quán nội bộ của một yếu tố. Tính nhất quán nội bộ nghĩa là các biến quan sát trong một thang đo phải có sự tương quan thuận chặt chẽ nhau, cùng giải thích cho một khái niệm. Cronbach' Alpha là một chỉ số đo lường tính nhất quán nội bộ này. Như vậy, nếu một thang đo mà các biến quan sát có sự tương quan thuận càng chặt chẽ, thang đo đó càng có tính nhất quán cao, hệ số Cronbach’s Alpha sẽ càng cao.
Hệ số Cronbach’s Alpha có giá trị biến thiên trong đoạn [0,1]. Mức 0 nghĩa là các biến quan sát trong nhóm gần như không có một sự tương quan nào, mức 1 nghĩa là các biến quan sát tương quan hoàn hảo với nhau, hai mức 0 và 1 hiếm khi xảy ra trong phân tích dữ liệu. Một số trường hợp xuất hiện hệ số Cronbach’s Alpha âm vượt ngoài đoạn giới hạn [0,1], lúc này thang đo hoàn toàn không có độ tin cậy, không có tính đơn hướng, các biến quan sát trong thang đo đối lập, ngược chiều nhau.
3. Các tiêu chuẩn trong kiểm định độ tin cậy thang đo Cronbach's Alpha
Theo Nunnally (1978) , một thang đo tốt nên có độ tin cậy Cronbach’s Alpha từ 0.7 trở lên. Hair và cộng sự (2009) cũng cho rằng, một thang đo đảm bảo tính đơn hướng và đạt độ tin cậy nên đạt ngưỡng Cronbach’s Alpha từ 0.7 trở lên, tuy nhiên, với tính chất là một nghiên cứu khám phá sơ bộ, ngưỡng Cronbach’s Alpha là 0.6 có thể chấp nhận được. Hệ số Cronbach's Alpha càng cao thể hiện độ tin cậy của thang đo càng cao.
Một chỉ số quan trọng khác đó là Corrected Item – Total Correlation. Giá trị này biểu thị mối tương quan giữa từng biến quan sát với các biến còn lại trong thang đo. Nếu biến quan sát có sự tương quan thuận càng mạnh với các biến khác trong thang đo, giá trị Corrected Item – Total Correlation càng cao, biến quan sát đó càng tốt. Cristobal và cộng sự (2007) cho rằng, một thang đo tốt khi các biến quan sát có giá trị Corrected Item – Total Correlation từ 0.3 trở lên. Như vậy, khi thực hiện kiểm định độ tin cậy Cronbach’s Alpha, biến quan sát có hệ số Corrected Item – Total Correlation nhỏ hơn 0.3, cần xem xét loại bỏ biến quan sát đó. Hệ số Corrected Item – Total Correlation càng cao, biến quan sát đó càng chất lượng.
Chúng ta cũng cần chú ý đến giá trị của cột Cronbach's Alpha if Item Deleted, cột này biểu diễn hệ số Cronbach's Alpha nếu loại biến đang xem xét. Mặc dù đây không phải là một tiêu chuẩn phổ biến để đánh giá độ tin cậy thang đo, tuy nhiên, nếu giá trị Cronbach's Alpha if Item Deleted lớn hơn hệ số Cronbach Alpha của nhóm thì chúng ta nên cân nhắc xem xét biến quan sát này tùy vào từng trường hợp. Chi tiết bạn xem tại bài viết Xử lý trường hợp Cronbach’s Alpha if Item Deleted lớn hơn Cronbach's Alpha của nhóm. Hệ số Cronbach's Alpha if Item Deleted càng nhỏ, biến quan sát càng chất lượng.
Không có khái niệm Cronbach's Alpha của từng biến quan sát. Các bạn cần đọc kỹ lý thuyết ở trên để tránh hiểu sai lệch khái niệm. Một số bạn đang nhầm lẫn giá trị Cronbach's Alpha if Item Deleted là giá trị Cronbach's Alpha của từng biến quan sát nên so sánh với ngưỡng 0.6 và kết luận. Điều này là sai hoàn toàn.
Tóm lại khi đánh giá một kết quả Cronbach's Alpha chúng ta cần đánh giá 2 tiêu chí sau:
1. Hệ số Cronbach's Alpha của thang đo cần trên 0.6 (hoặc 0.7).2. Hệ số Corrected Item – Total Correlation của từng biến quan sát trong thang đo nên từ 0.3 trở lên.
Xem thêm:Cách loại biến trong phân tích Cronbach Alpha trên SPSS Xem thêm:Làm sao để tăng hệ số Cronbach's Alpha trong SPSS?4. Hướng dẫn kiểm định độ tin cậy thang đo Cronbach Alpha trên SPSS
Bên dưới sẽ là bài hướng dẫn phân tích Cronbach Alpha bằng video và hình ảnh. Nếu bạn chỉ tập trung ngắn gọn vào thao tác, bạn vui lòng xem ở phần hướng dẫn hình ảnh ngay sau video. Nội dung trình bày trong video mình sẽ giải thích thêm các yếu tố khó diễn giải bằng câu chữ nên sẽ dài hơn một chút.
Xem thêm: Giáo trình xử lý SPSS toàn tập có dữ liệu thực hành
Để thực hiện kiểm định độ tin cậy thang đo Cronbach’s Alpha trong SPSS 20, chúng ta vào Analyze > Scale > Reliability Analysis…
Từ khóa » Hệ Số Tin Cậy Cronbach Alpha Là Gì
-
Cronbach Alpha Là Gì? Cách Chạy Cronbach Alpha Trong SPSS
-
Cronbach's Alpha Là Gì? Phân Tích độ Tin Cậy ... - Luận Văn 2S
-
Bài 8. Phân Tích độ Tin Cậy Cronbach's Alpha - Nghiên Cứu Giáo Dục
-
Phân Tích độ Tin Cậy Cronbach's Alpha - Hỗ Trợ SPSS
-
Hệ Số Cronbach Alpha Là Gì? Cách Tính Và 5 Mức độ Giá Trị Phải Biết!
-
Phân Tích độ Tin Cậy Cronbach Alpha Trên SPSS - Xử Lý Định Lượng
-
Hệ Số Cronbach's Alpha SPSS: Định Nghĩa, Các Bước, Lỗi Thường ...
-
Đánh Giá độ Tin Cậy Của Thang đo Bằng Phần Mềm SPSS
-
Kiểm định Cronbach's Alpha Là Gì? Hướng Dẫn Cách Phân Tích Và ...
-
Cronbach Alpha Là Gì? Các Vấn đề Thường Gặp Và Cách Xử Lý
-
Kiểm định độ Tin Cậy Thang đo Hệ Số Cronbach's Alpha - Luận Văn Việt
-
Phân Tích độ Tin Cậy Cronbach Alpha Trên SPSS - HNC
-
Hệ Số Cronbach Alpha Là Gì ? Thực Hành Phân Tích Cronbach Alpha
-
Độ Tin Cậy Thang đo Là Gì