Phương Pháp Giải Phương Trình Bậc Hai Một ẩn Hay, Chi Tiết
Có thể bạn quan tâm
- Siêu sale sách Toán - Văn - Anh Vietjack 15-12 trên Shopee mall
Bài viết Phương pháp giải phương trình bậc hai một ẩn lớp 9 với phương pháp giải chi tiết giúp học sinh ôn tập, biết cách làm bài tập Phương pháp giải phương trình bậc hai một ẩn.
- Cách giải bài tập Phương pháp giải phương trình bậc hai một ẩn
- Bài tập vận dụng Phương pháp giải phương trình bậc hai một ẩn
- Bài tập tự luyện Phương pháp giải phương trình bậc hai một ẩn
Phương pháp giải phương trình bậc hai một ẩn hay, chi tiết
A. Phương pháp giải
Phương trình bậc hai một ẩn có dạng ax2 + bx + c = 0 (a ≠ 0). Để giải phương trình ta làm như sau
B1: Xác định các hệ số a, b, c
B2: Tính ∆ = b2 - 4ac
+ Nếu ∆ < 0 thì phương trình vô nghiệm
+ Nếu ∆ = 0 thì phương trình có nghiệm kép:
+ Nếu ∆ > 0 thì phương trình có 2 nghiệm phân biệt:
Ví dụ 1: Giải phương trình x2 + 3x + 3 = 0
Giải
Ta có: a = 1; b = 3; c = 3 ⇒ ∆ = b2 – 4ac = 9 – 12 = - 3 < 0
Vậy phương trình vô nghiệm.
Ví dụ 2: Giải phương trình x2 + x - 5 = 0
Giải
Ta có: a = 1; b = 1; c = - 5 ⇒ ∆ = b2 – 4ac = 1 + 20 = 21 > 0
Vậy phương trình có hai nghiệm phân biệt:
Ví dụ 3: Giải phương trình x2 + 2x + 2 = 0
Giải
Ta có: a = 1; b = 2; c = 2
⇒ ∆ = b2 – 4ac =
Vậy phương trình có nghiệm kép:
* Công thức nghiệm thu gọn: Dùng khi hệ số b = 2bꞌ
Phương trình ax2 + bx + c = 0 (a ≠ 0) có ∆ꞌ = (bꞌ)2 - ac (b = 2bꞌ)
+ Nếu ∆ꞌ < 0 thì phương trình vô nghiệm
+ Nếu ∆ꞌ = 0 thì phương trình có nghiệm kép:
+ Nếu ∆ꞌ > 0 thì phương trình có 2 nghiệm phân biệt
Ví dụ 4: Giải phương trình sau:
Giải
Ta có: a = 3; bꞌ = -√3 ; c = -3 ⇒ ∆ꞌ = (bꞌ)2 - ac =
Vậy phương trình có hai nghiệm phân biệt:
* Nếu hệ số b = 0 thì phương trình có dạng: ax2 + c = 0 (2)
Để giải phương trình (2) ngoài cách dùng ∆ hoặc ∆ꞌ ở trên ta có thể làm như sau:
+ Nếu ac > 0 thì phương trình vô nghiệm
+ Nếu ac = 0 thì phương trình có nghiệm kép x = 0
+ Nếu ac < 0 thì phương trình có 2 nghiệm phân biệt
Ví dụ 5: Giải các phương trình sau:
a. 2x2 + 3 = 0
b. -7x2 = 0
c. 3x2 – 12 = 0
Giải
Vậy phương trình có 2 nghiệm phân biệt: x = 2, x = -2
*Nếu hệ số c = 0 thì phương trình có dạng: ax2 + bx = 0 (3)
Để giải phương trình (3) ngoài cách dùng ∆ hoặc ∆ꞌ ở trên ta có thể làm như sau
Ví dụ 6: Giải các phương trình sau
a. 3x2 +8x = 0
b. 5x2 – 10x = 0
Giải
a. Ta có:
Vậy phương trình có 2 nghiệm là: x = 0,
b. Ta có:
Vậy phương trình có 2 nghiệm là: x = 0, x = 2
B. Bài tập
Câu 1: Một nghiệm của phương trình 3x2 + 5x – 2 = 0 là
A. -2
B. -1
C. -5
D. 0
Giải
Ta có: a = 3; b = 5; c = -2 ⇒ ∆ = b2 – 4ac = 52 – 4.3.(-2) = 49 > 0
Phương trình có hai nghiệm phân biệt:
Vậy đáp án đúng là A
Câu 2: Số nghiệm của phương trình 3x2 - 6x + 3 = 0 là
A. 3
B. 2
C. 1
D. 0
Giải
Ta có: a = 3; bꞌ = -3; c = 3 ⇒ ∆ꞌ = (bꞌ)2 - ac = (-3)2 – 3.3 = 9 - 9 = 0
Suy ra phương trình có một nghiệm
Vậy đáp án đúng là C
Câu 3: Giả sử x1, x2 (x1 > x2) là hai nghiệm của phương trình 5x2 - 6x + 1 = 0. Tính 2x1 + 5x2
A. 6
B. 5
C. 4
D. 3
Giải
Ta có: a = 5; bꞌ = -3; c = 1 ⇒ ∆ꞌ =(bꞌ)2 - ac = (-3)2 – 5.1 = 9 - 5 = 4 > 0
Suy ra phương trình có hai nghiệm phân biệt
Vậy đáp án đúng là D
Câu 4: Số thực nào sau đây là nghiệm của phương trình x2 - x + 8 = 0
A. 2
B. 10
C. -15
D. Không có
Giải
Ta có: a = 1; b = -1; c = 8 ⇒ ∆ = b2 – 4ac = (-1)2 – 4.1.8 = -31 < 0
Vậy phương trình vô nghiệm
Vậy đáp án đúng là D
Câu 5: Giả sử x1 < x2 là hai nghiệm của phương trình x2 -7x - 8 = 0. Tính 2x1
A. -2
B. 1
C. -1
D. 6
Giải
Ta có: a = 1; b = -7; c = -8 ⇒ ∆ = b2 – 4ac = (-7)2 – 4.1.(-8) = 81 > 0
Phương trình có hai nghiệm phân biệt
Suy ra x1 = -1 do đó 2x1 = -2
Vậy đáp án đúng là A
Câu 6: Nghiệm của phương trình 3x2 + 15 = 0 là
Giải
Phương trình 3x2 + 15 = 0 ⇔ 3x2 = -15 ⇔ x2 = -5 (vô nghiệm)
Vậy đáp án đúng là D
Câu 7: Nghiệm của phương trình x2 + 13x = 0 là
A. 13 và -13
B. 0 và -13
C. 0 và 13
D. Vô nghiệm
Giải
Phương trình x2 + 13x = 0
Vậy đáp án đúng là B
Câu 8: Cho phương trình 2x2 + 4x + 1 = -x2 - x – 1. Tính |x1 - x2|
Giải
Phương trình 2x2 + 4x + 1 = -x2 - x – 1
Ta có: a = 3; b = 5; c = 2 ⇔ ∆ = b2 – 4ac = (5)2 – 4.3.2 = 1 > 0
⇒ Phương trình có hai nghiệm phân biệt
Vậy đáp án đúng là A
Câu 9: Cho phương trình x2 - 10x + 21 = 0. Khẳng định nào sau đây đúng
A. Phương trình vô nghiệm
B. Phương trình có nghiệm không nguyên
C. Phương trình có 1 nghiệm
D. Phương trình có 2 nghiệm nguyên
Giải
Ta có: a = 1; b = -10; c = 21 ⇒ ∆ = b2 – 4ac = (-10)2 – 4.1.21 = 16 > 0
Phương trình có hai nghiệm phân biệt
Vậy đáp án đúng là D
Câu 10: Số nghiệm của phương trình 4x2 - 6x = -2x là
A. 1
B. 0
C. 2
D. 3
Giải
Vậy đáp án đúng là C
C. Bài tập tự luyện
Bài 1. Giải các phương trình sau:
a) -3x2+4x-4=0 b) 5x2-107x+549=0
c) x2-(2+3)x+23=0 d) 3x2+3=2(x+1)
e) (2x-2)2-1=(x+1)(x-1) f) 12x(x+1)=(x-1)2
Bài 2. Cho phương trình mx2 – 2(m – 1)x + m – 3 = 0. Tìm các giá trị của m để các phương trình:
a) Có hai nghiệm phân biệt;
b) Có nghiệm kép;
c) Vô nghiệm;
d) Có đúng một nghiệm;
e) Vô nghiệm.
Bài 3. Số nghiệm của các phương trình sau:
a) x2 – 6x + 8 = 0;
b) 9x2 – 12x + 4 = 0;
c) -3x2+22x-5=0;
d) 2x2-(1-22)x-2=0
Bài 4. Giải và biện luận các phương trình sau:
a) mx2 + (2m – 1)x + m + 2 = 0;
b) (m – 2)x2 – 2(m + 1)x + m = 0.
Bài 5. Cho phương trình (m – 2)x2 – 2(m + 1)x + m = 0. Tìm m để phương trình có nghiệm kép và tính 2x1 + x2
Xem thêm các dạng bài tập Toán lớp 9 chọn lọc, có đáp án hay khác:
- Cách xác định các hệ số a, b, c của phương trình bậc hai một ẩn
- Cách giải các dạng toán giải phương trình bậc hai một ẩn cực hay
- Cách giải và biện luận phương trình bậc hai một ẩn cực hay
- Cách giải hệ phương trình 2 ẩn bậc hai cực hay, chi tiết
- Cách tìm m để hai phương trình có nghiệm chung cực hay
- Cách giải phương trình bậc nhất hai ẩn cực hay, chi tiết
- Tài liệu cho giáo viên: Giáo án, powerpoint, đề thi giữa kì cuối kì, đánh giá năng lực, thi thử THPT, HSG, chuyên đề, bài tập cuối tuần..... độc quyền VietJack, giá hợp lí
Tủ sách VIETJACK luyện thi vào 10 cho 2k10 (2025):
- Giải mã đề thi vào 10 theo đề Hà Nội, Tp. Hồ Chí Minh (300 trang - từ 99k/1 cuốn)
- Bộ đề thi thử 10 chuyên (120 trang - từ 99k/1 cuốn)
- Cấp tốc 7,8,9+ Toán Văn Anh thi vào 10 (400 trang -từ 119k)
- Hơn 20.000 câu trắc nghiệm Toán,Văn, Anh lớp 9 có đáp án
ĐỀ THI, GIÁO ÁN, SÁCH ĐỀ THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 9
Bộ giáo án, bài giảng powerpoint, đề thi dành cho giáo viên và sách dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official
Tổng đài hỗ trợ đăng ký : 084 283 45 85
Từ khóa » Cách Tính Phương Trình Bậc 2 Một ẩn
-
Tổng Hợp Dạng Toán Về Phương Trình Bậc 2 Một ẩn Thông Dụng Nhất.
-
Phương Trình Bậc 2 Một ẩn Và Cách Giải đúng Bạn Cần Biết
-
Phương Trình Bậc Hai Một ẩn: Lý Thuyết Và Cách Giải Các Dạng Toán
-
Cách Giải Phương Trình Bậc 2 Một ẩn - TopLoigiai
-
Phương Trình Bậc Hai Một ẩn Và Cách Giải - YouTube
-
Phương Trình Bậc 2 Một ẩn Là Gì? Ví Dụ Về Giải Phương Trình Bậc Hai ...
-
Cách Giải Phương Trình Bậc 2 Một Ẩn Số, Ví Dụ Về ...
-
Cách Giải Phương Trình Bậc 2 - Gia Sư Tâm Tài Đức
-
3 Cách Giải Phương Trình Bậc 2 Cực đơn Giản, Chính Xác 100%
-
Phương Trình Bậc Hai Một ẩn Và Công Thức Nghiệm
-
Cách Giải Phương Trình Bậc Hai Nhanh Nhất - Học Toán Lớp 9
-
Công Thức Nghiệm Của Phương Trình Bậc Hai
-
Cách Giải Phương Trình Bậc 2
-
Phương Pháp Học Sinh Phải Biết để Giải Phương Trình Bậc 2 Một ẩn