Phương Trình Tiếp Tuyến Với đường Cong Y = F(x)

  • Trang Chủ
  • Đăng ký
  • Đăng nhập
  • Upload
  • Liên hệ

Lớp 12, Giáo Án Lớp 12, Bài Giảng Điện Tử Lớp 12

Trang ChủToán Học Lớp 12Hình Học Lớp 12 Phương trình tiếp tuyến với đường cong y = f(x) Phương trình tiếp tuyến với đường cong y = f(x)

PHƯƠNG TRÌNH TIẾP TUYẾN VỚI Đ/CONG y = f(x)

1. Điều kiện tiếp xúc : Cho hai hs : y = f(x) và y = g(x) có đồ thị lần lượt là (C) và (C’).

 

doc 3 trang Người đăng ngochoa2017 Lượt xem 9414Lượt tải 0 Download Bạn đang xem tài liệu "Phương trình tiếp tuyến với đường cong y = f(x)", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trênPHƯƠNG TRÌNH TIẾP TUYẾN VỚI Đ/CONG y = f(x) 1. Điều kiện tiếp xúc : Cho hai hs : y = f(x) và y = g(x) có đồ thị lần lượt là (C) và (C’). (C) tiếp xúc với (C’) có nghiệm x (x là hoành độ tiếp điểm) 2. Các dạng bài tập về Phương trình tiếp tuyến (pttt) : Dạng 1 : Viết pttt với (C) : y = f(x) tại điểm PPG : - Tìm y’(x) => Pttt : y = y’(x).(x - x) + y Dạng 2 : Viết pttt với (C) : y = f(x) biết tt đi qua điểm PPG : - Pttt có dạng : y = k.(x - x) + y - Áp dụng điều kiện tiếp xúc để tìm k => Pttt Dạng 3 : Viết pttt với (C) : y = f(x) biết tt có hệ số góc bằng k PPG : - Pttt có dạng : y = k.x + b - Áp dụng điều kiện tiếp xúc để tìm b => Pttt * BÀI TẬP : (55) a. Cho hàm số Viết pttt của đồ thị (C) , biết tiếp tuyến vuông góc với b. Cho hàm số Viết pttt của đồ thị (C) , biết tiếp tuyến song song với c. Cho hàm số . Viết pttt kẻ từ gốc toạ độ đến đồ thị của hàm số d. Cho hàm số . Viết pttt đi qua điểm A(-6;5) với đồ thị của hàm số (56) Cho hàm số . a. Viết pttt đi qua điểm O(0 ; 0) với đồ thị của hàm số b. Tìm các điểm trên (C) có tọa độ là các số nguyên (57) a. Cho hàm số Với giá trị nào của m thì đồ thị hàm số có tiếp tuyến vuông góc với đường phân giác của góc phần tư thứ nhất? b. Tìm các điểm trên đồ thị của hàm số sao cho tiếp tuyến tại đó vuông góc với tiệm cận xiên của (C). c. Cho hàm số . Tìm trên đường thẳng y = 2 những điểm mà từ đó c1. Kẻ được 1 tiếp tuyến với (C) c2. Kẻ được 2 tiếp tuyến với (C) c3. Kẻ được 3 tiếp tuyến với (C) d. Cho hàm số . Tìm trên trục tung những điểm mà từ đó d1. Kẻ được 1 tiếp tuyến với (C) d2. Kẻ được 2 tiếp tuyến với (C) d3. Kẻ được 3 tiếp tuyến với (C) d4. Kẻ được 4 tiếp tuyến với (C) (58) Cho hàm số Khảo sát và vẽ đồ thị (C) khi m = 2 Gọi M là điểm thuộc (Cm) có hoành độ bằng – 1 . Tìm m để tiếp tuyến của (Cm) tại điểm M song song với đường thẳng 5x – y = 0. (59) Cho hs : y = a) Khảo sát và vẽ đồ thị (C) của hs b) Viết phương trình đường thẳng (d) tiếp xúc với (C) tại điểm A(- ; 1) và tìm giao điểm B (khác A) của (d) và (C) (60) Cho hàm số Khảo sát và vẽ đồ thị (C) của hs Gọi M là điểm thuộc (C) có hoành độ x= a . Tìm a để tiếp tuyến của (C) tại điểm M cắt (C) tại hai điểm khác M. (61) Cho hs : y = a) Khảo sát và vẽ đồ thị (C) của hs b) CMR qua điểm A(- ; -1) ta kẻ được ba tiếp tuyến với (C), trong đó có hai tiếp tuyến vuông góc với nhau (62) Cho hs : y = a) Khảo sát và vẽ đồ thị (C) của hs b) Tìm trên trục hoành các điểm từ đó có thể kẻ được ba tiếp tuyến với (C) ; trong đó có hai tiếp tuyến vuông góc với nhau (63) Cho hs : y = a) Khảo sát và vẽ đồ thị (C) của hs b) Lập Pttt với (C) đi qua điểm A( ; -2) c) Tìm trên đường thẳng y = -2 các điểm từ đó có thể kẻ đến (C) hai tiếp tuyến vuông góc với nhau (64) Cho hs : y = có đồ thị là (C) a) Khảo sát và vẽ đồ thị (C) của hs khi m = 0 b) Tìm m để (C) cắt đường thẳng y = 1 tại ba điểm A(0 ; 1), B, C sao cho tiếp tuyến của (C) tại B và C vuông góc với nhau (65) Cho hs : y = a) Khảo sát và vẽ đồ thị (C) của hs b) Tìm điểm M (C) sao cho qua M ta kẻ được một và chỉ một tiếp tuyến với (C) (66) Cho hs : y = a) Khảo sát và vẽ đồ thị (C) của hs b) Viết Pttt () với (C) tại điểm A(a ; y) với a-1 c) Tính khoảng cách từ M(-1 ; 1) tới (). Tìm a để khoảng cách đó lớn nhất (67) Cho hs : y = a) Khảo sát và vẽ đồ thị (C) của hs b) Tiếp tuyến tại điểm S (C) cắt hai tiệm cận tại P và Q. Chứng minh S là trung điểm của PQ (68) Cho 2 hs : y = và y = x a) Tìm m để đồ thị các hs trên tiếp xúc nhau b) Viết Pttt chung của hai đồ thị ứng với m tìm được. (69) Cho hs : y = a) CMR nếu đồ thị hs cắt Ox tại x = x thì hệ số góc của tiếp tuyến tại đó là : k = b) Tìm m để đồ thị cắt Ox tại 2 điểm và hai tiếp tuyến tại 2 điểm đó vuông góc với nhau.

Tài liệu đính kèm:

  • docTiep tuyen.doc
Tài liệu liên quan
  • docÔn thi đại học - Chủ đề: Phương pháp toạ độ trong không gian

    Lượt xem Lượt xem: 1233 Lượt tải Lượt tải: 0

  • docGiáo án Hình học 12 NC - Tiết 44: Luyện tập tổng hợp (phương trình đường thẳng )

    Lượt xem Lượt xem: 1378 Lượt tải Lượt tải: 1

  • docGiáo án Hình học 12 - GV: Trần Tuấn Huy - Chương I: Khối đa diện

    Lượt xem Lượt xem: 1104 Lượt tải Lượt tải: 0

  • docGiáo án Hình học 12 tiết 33-34-35: Ôn tập học kì I

    Lượt xem Lượt xem: 757 Lượt tải Lượt tải: 0

  • docGiáo án Hình học 12 cơ bản cả năm

    Lượt xem Lượt xem: 1174 Lượt tải Lượt tải: 0

  • docBài giảng 7 ( 4 buổi): Tam giác lượng

    Lượt xem Lượt xem: 2782 Lượt tải Lượt tải: 0

  • docGiáo án Hình học 12 - Tiết 13, 15: Bài tập khái niệm về mặt tròn xoay

    Lượt xem Lượt xem: 825 Lượt tải Lượt tải: 0

  • docGiáo án Lớp 12 môn Toán - Tiết 3 - Tuần 3 - Bài tập khái niệm về khối đa diện

    Lượt xem Lượt xem: 1011 Lượt tải Lượt tải: 0

  • docGiáo án Hình học 12 - Tiết 15 - Bài 2: Mặt cầu

    Lượt xem Lượt xem: 811 Lượt tải Lượt tải: 0

  • docGiáo án môn Hình học 12 tiết 13-15: Khái niệm về mặt tròn xoay

    Lượt xem Lượt xem: 3956 Lượt tải Lượt tải: 1

Copyright © 2024 Lop12.net - Giáo án điện tử lớp 12, Sáng kiến kinh nghiệm hay, chia sẻ thủ thuật phần mềm

Facebook Twitter

Từ khóa » Bài Tập Viết Phương Trình Tiếp Tuyến Của đường Cong