Prove That : Sinx - Sin3xsin^2x - Cos^2x = 2sin X - Toppr

SolveGuidesJoin / LoginUse appLogin0You visited us 0 times! Enjoying our articles? Unlock Full Access!Standard XIMathsTrigonometric Functions of Sum and Difference of Two anglesQuestionProve that :$$\dfrac{\sin x -\sin 3x}{\sin^2x -\cos^2x}=2\sin x$$Open in AppSolutionVerified by Toppr

LHS :$$\dfrac{\sin x -\sin 3x}{\sin^2x-\cos^2x}$$$$=\dfrac{2\sin (\dfrac{x-3x}{2}) \cos (\dfrac{x+3x}{2})}{-(\cos^2x -\sin^2x)}$$$$=\dfrac{2\sin (-x) \cos 2x}{-\cos 2x}$$$$=\dfrac{-2\sin x \cos 2x}{-\cos 2x}$$$$=2\sin x$$ = RHS

Was this answer helpful?175Similar QuestionsQ1Prove that :$$\dfrac{\sin x -\sin 3x}{\sin^2x -\cos^2x}=2\sin x$$View SolutionQ2Prove that sinxsin3xsin2xcos2x=2sinxView SolutionQ3

Prove that sin3xsinxcos2x=2sinx

View Solution
Q4

Prove the following: sin x - sin 3xsin2xcos2x=2sin x.

View Solution
Q5sinx+sin2x+sin3xcosx+cos2x+cos3xdxView Solution

Từ khóa » Sin X Bình