Quy Tắc đếm - Lý Thuyết Toán 11 Và Bài Tập Vận Dụng - Marathon
Có thể bạn quan tâm
Quy tắc đếm là kiến thức đặc biệt quan trọng trong chương trình đại số phổ thông. Team Marathon Education đã tổng hợp những lý thuyết về quy tắc đếm và các dạng bài tập liên quan giúp các em có thể hiểu rõ hơn về kiến thức này qua bài viết sau.
>>> Xem thêm: Hoán Vị, Chỉnh Hợp, Tổ Hợp – Lý Thuyết Toán 11 Và Bài Tập Vận Dụng
>>> Xem thêm: Dạng Bài Tập Và Cách Giải Bất Phương Trình Toán Lớp 10
>>> Xem thêm: Học Online Toán 11 Bứt Phá Điểm Số Với Marathon Education
Các quy tắc đếm cơ bản
Quy tắc cộng
Quy tắc cộng được hiểu như sau: Có k phương án: B1, B2, B3,…Bk để thực hiện công việc
Trong đó:
- Có n1 cách thực hiện theo phương án B1
- Có n2 cách thực hiện theo phương án B2
- Có n3 cách thực hiện theo phương án B3
…
- Có nk cách thực hiện theo phương án Bk
Khi đó, số cách để thực hiện công việc sẽ là: n1 + n2 + n3 +…+ nk (cách)
Nếu A và B là 2 tập hợp hữu hạn không giao nhau thì số phần tử A ∪ B bằng tổng số phần tử của A và của B, tức là: |A ∪ B| = |A| + |B|
Ví dụ: Đi từ TP. Hồ Chí Minh ra Đà Nẵng có thể di chuyển bằng xe khách, máy bay và tàu lửa. Có 10 chuyến xe khách, 2 chuyến tàu lửa và 1 chuyến máy bay tới Đà Nẵng. Tìm số cách để đi từ TP. Hồ Chí Minh ra Đà Nẵng.
Hướng dẫn giải:
Có 10 cách đi bằng xe khách.
Có 2 cách đi bằng tàu lửa.
Có 1 cách đi bằng máy bay.
Vậy có tất cả 10 + 2 + 1 = 13 cách để đi từ TP. Hồ Chí Minh ra Đà Nẵng.
>>> Xem thêm: Phép Thử Và Biến Cố – Lý Thuyết Toán 11 Và Bài Tập Vận Dụng
Lý Thuyết Toán 10 Các Phép Toán Tập HợpQuy tắc nhân
Quy tắc nhân được hiểu như sau: Có k công đoạn B1, B2, B3,…Bk để thực hiện công việc.
Trong đó:
- Có n1 cách thực hiện công đoạn B1
- Có n2 cách thực hiện công đoạn B2
- Có n3 cách thực hiện công đoạn B3
….
- Có nk cách thực hiện công đoạn Bk
Khi đó, số cách thực hiện công việc sẽ là: n1.n2.n3….nk (cách).
Ví dụ: Vy muốn đặt mật khẩu điện thoại có 4 chữ số. Chữ số đầu tiên là một trong 4 số 1; 2; 3; 4. Chữ số thứ hai là một trong 3 số 5; 6; 7. chữ số thứ 3 là một trong 4 số 7; 8; 9; 0. Chữ số thứ tư là một trong 3 chữ số 0; 1; 2. Hỏi có bao nhiêu cách để Vy đặt mật khẩu điện thoại?
Hướng dẫn:
Có 4 cách để chọn chữ số đầu tiên.
Có 3 cách để chọn chữ số thứ 2.
Có 4 cách để chọn chữ số thứ 3.
Có 3 cách để chọn chữ số thứ 4.
Vậy có tất cả 4.3.4.3 = 144 cách để Vy đặt mật khẩu điện thoại.
ĐĂNG KÝ NGAYQuy tắc bù trừ
Quy tắc bù trừ được thực hiện như sau: Thực hiện đếm phần dễ đếm để suy ra phần khó đếm. Dấu hiệu của những bài toán cần sử dụng quy tắc bù trừ là khi đề bài xuất hiện các cụm từ như: có ít nhất, ít nhất, có nhiều nhất, luôn có,…
Ví dụ: Trong một ngôi làng có 50 người thanh niên. Quy định phải chọn ra 4 người trong số 50 người này để tham gia một lễ hội trong làng. Khi đó, cách để chọn ra 4 người để tham gia lễ hội cũng sẽ bằng với cách chọn ra 46 người không tham gia lễ hội. Vì thực tế, nếu 46 người không được chọn thì 4 người còn lại sẽ là người được chọn để tham gia lễ hội trong làng.
Lý thuyết, công thức về Bất đẳng thức bunhiacopxkiBài tập vận dụng về quy tắc đếm
Để có cái nhìn tổng quan nhất về quy tắc đếm và cách áp dụng các quy tắc này trong giải bài tập, các em có thể tham khảo các ví dụ dưới đây:
Bài tập 1
Trong kỳ thi THPTQG 2016, trường Lê Hồng Phong có kết quả thi xuất sắc nên được quyền lựa chọn 1 học sinh tham dự trại hè quốc tế. Nhà trường đã quyết định chọn 1 học sinh có điểm thi đạt từ 28,5 trở lên ở các lớp 12A1, 12 A2 hoặc lớp 12A3. Hỏi nhà trường có bao nhiêu cách chọn. Biết rằng lớp 12A1 có 5 học sinh có điểm thi đạt từ 28,5 trở lên, lớp 12A2 có 4 học sinh và lớp 12A3 có 3 học sinh đạt từ 18,5 điểm trở lên.
Lời giải: Để chọn 1 học sinh có điểm từ 28,5 trở lên tham dự trại hè chúng ta có các cách chọn như sau:
- Có 5 cách chọn từ lớp 12A1
- Có 4 cách chọn từ lớp 12A2
- Có 3 cách chọn từ lớp 12A3
Suy ra, có tổng cộng 5 + 4 + 3 = 12 (cách chọn)
Bài tập 2
Cho tập A = {1,2,3,4,5,6,7,8,9}. Từ các phần tử của A có thể lập được bao nhiêu số tự nhiên chẵn gồm 4 chữ số đôi 1 khác nhau.
Lời giải: Giả sử số tự nhiên cần lập là abcd.
Trong đó, việc lập số tự nhiên này sẽ bao gồm 4 bước như sau:
- Bước 1: Chọn d là số chẵn có 4 cách chọn (chọn 1 trong 4 chữ số: 2,4,6,8)
- Bước 2: Chọn a có 8 cách (chọn 8 trong 9 chữ số còn lại trừ chữ số d đã chọn trước đó)
- Bước 3: Chọn b có 7 cách (trừ đi cách chọn của a và d)
- Bước 4: Chọn c có 6 cách (khác a,b và d)
Theo quy tắc nhân sẽ có: 4.8.7.6 = 1344 cách chọn.
>>> Xem thêm: Các Dạng Bài Tập Tổ Hợp Xác Suất Và Cách Giải Nhanh, Chính Xác Nhất
Gia sư Online Học Online Toán 12 Học Online Hóa 10 Học Online Toán 11 Học Online Toán 6 Học Online Toán 10 Học Online Toán 7 Học Online Lý 10 Học Online Lý 9 Học Online Toán 8 Học Online Toán 9 Học Tiếng Anh 6 Học Tiếng Anh 7Tham khảo ngay các khoá học online của Marathon Education
Trên đây là tổng hợp kiến thức về quy tắc đếm và những ví dụ minh hoạ để các em có thể hiểu hơn về nguyên tắc và điều kiện áp dụng trong mỗi dạng bài cụ thể. Mong rằng những kiến thức này sẽ thực sự bổ ích và hỗ trợ nhiều cho các em trong quá trình học và làm bài tập. Đừng quên đăng ký khoá học tại Marathon Education ngay để được cùng học online và ôn luyện Toán – Lý – Hoá toàn diện với các thầy cô siêu chất lượng.
Từ khóa » Bài Tập Quy Tắc đếm
-
Hướng Dẫn Làm Bài Tập Toán Lớp 11 Trắc Nghiệm - Quy Tắc Đếm ...
-
41 Câu Trắc Nghiệm Quy Tắc đếm
-
100 Bài Tập Quy Tắc đếm Có đáp án Và Lời Giải Chi Tiết
-
Bài Tập Quy Tắc đếm Lớp 11 Có Lời Giải - Toán Thầy Định
-
Giải Toán 11 Bài 1: Quy Tắc đếm
-
Bài Tập Quy Tắc đếm - Gia Sư Tâm Tài Đức
-
Các Dạng Bài Tập Về Quy Tắc đếm (quy Tắc Cộng Và Quy Tắc Nhân)
-
Quy Tắc đếm - Chuyên đề Tổ Hợp Xác Suất Môn Toán Lớp 11
-
Quy Tắc đếm - Bài Tập & Lời Giải Đại Số Lớp 11 - I Toán - Itoan
-
Bài Tập Quy Tắc đếm Lớp 11 Có Lời Giải Chi Tiết - TÀI LIỆU RẺ
-
Các Dạng Bài Tập Về Qui Tắc đếm
-
Bài Tập Trắc Nghiệm Quy Tắc Đếm Có Đáp Án Và Lời Giải
-
Quy Tắc đếm - Toán Học Lớp 11 - Baitap123
-
Đại Số 11: Bài Tập Quy Tắc đếm | VẬT LÝ PHỔ THÔNG