Reducing Fractions To Their Lowest Terms - Tiger Algebra

Có thể bạn quan tâm

Step 1 :

x - y Simplify ————— m

Equation at the end of step 1 :

(x - y) ((m • (x - y)) - (n • ———————)) - n m

Step 2 :

Equation at the end of step 2 :

n • (x - y) ((m • (x - y)) - ———————————) - n m

Step 3 :

Equation at the end of step 3 :

n • (x - y) (m • (x - y) - ———————————) - n m

Step 4 :

Rewriting the whole as an Equivalent Fraction :

4.1 Subtracting a fraction from a whole Rewrite the whole as a fraction using m as the denominator :

m • (x - y) m • (x - y) • m m • (x - y) = ——————————— = ——————————————— 1 m

Equivalent fraction : The fraction thus generated looks different but has the same value as the whole Common denominator : The equivalent fraction and the other fraction involved in the calculation share the same denominator

Adding fractions that have a common denominator :

4.2 Adding up the two equivalent fractions Add the two equivalent fractions which now have a common denominatorCombine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

m • (x-y) • m - (n • (x-y)) m2x - m2y - xn + yn ——————————————————————————— = ——————————————————— m m

Equation at the end of step 4 :

(m2x - m2y - xn + yn) ————————————————————— - n m

Step 5 :

Rewriting the whole as an Equivalent Fraction :

5.1 Subtracting a whole from a fraction Rewrite the whole as a fraction using m as the denominator :

n n • m n = — = ————— 1 m

Adding fractions that have a common denominator :

5.2 Adding up the two equivalent fractions

(m2x-m2y-xn+yn) - (n • m) m2x - m2y - mn - xn + yn ————————————————————————— = ———————————————————————— m m

Final result :

m2x - m2y - mn - xn + yn ———————————————————————— m

Từ khóa » X^m×y^n=(x+y)^m+n