Robot Công Nghiệp - Chương 4 - TaiLieu.VN
Có thể bạn quan tâm
Mạng xã hội chia sẻ tài liệu Upload Đăng nhập Nâng cấp VIP Trang chủ » Kỹ Thuật - Công Nghệ » Cơ điện tử – Robot16 trang 394 lượt xem 1930Robot công nghiệp - Chương 4Tài liệu tham khảo giáo trình Robot công nghiệp - Chương 4: giải phương trình động học robot hay phương trình động học ngược
Chủ đề:
chuhopRobot công nghiệp
Bài giảng Robot công nghiệp
SaveLikeShareReport Download AI tóm tắt /16
Robot c«ng nghiÖp 42 Ch−¬ng IV Gi¶i ph−¬ng tr×nh ®éng häc robot hay ph−¬ng tr×nh ®éng häc ng−îc (Invers Kinematic Equations) Trong ch−¬ng 3, ta ®· nghiªn cøu viÖc thiÕt lËp hÖ ph−¬ng tr×nh ®éng häc cña robot th«ng qua ma trËn T6 b»ng ph−¬ng ph¸p g¾n c¸c hÖ to¹ ®é lªn c¸c kh©u vµ x¸c ®Þnh c¸c th«ng sè DH. Ta còng ®· xÐt tíi c¸c ph−¬ng ph¸p kh¸c nhau ®Ó m« t¶ h−íng cña kh©u chÊp hµnh cuèi nh− c¸c phÐp quay Euler, phÐp quay Roll-Pitch vµ Yaw .v.v...Trong ch−¬ng nÇy chóng ta sÏ tiÕn hµnh gi¶i hÖ ph−¬ng tr×nh ®éng häc ®· thiÕt lËp ë ch−¬ng tr−íc nh»m x¸c ®Þnh c¸c biÕn trong bé th«ng sè Denavit - Hartenberg khi ®· biÕt ma trËn vect¬ cuèi T6. KÕt qu¶ cña viÖc gi¶i hÖ ph−¬ng tr×nh ®éng häc ®ãng vai trß hÕt søc quan träng trong viÖc ®iÒu khiÓn robot. Th«ng th−êng, ®iÒu ta biÕt lµ c¸c vÞ trÝ vµ h−íng mµ ta muèn robot ph¶i dÞch chuyÓn tíi vµ ®iÒu ta cÇn biÕt lµ mèi quan hÖ gi÷a c¸c hÖ to¹ ®é trung gian ®Ó phèi hîp t¹o ra chuyÓn ®éng cña robot, hay nãi c¸ch kh¸c ®ã chÝnh lµ gi¸ trÞ cña c¸c biÕn khíp øng víi mçi to¹ ®é vµ h−íng cña kh©u chÊp hµnh cuèi hoÆc c«ng cô g¾n lªn kh©u chÊp hµnh cuèi, muèn vËy ta ph¶i gi¶i hÖ ph−¬ng tr×nh ®éng häc cña robot. ViÖc nhËn ®−îc lêi gi¶i cña bµi to¸n ®éng häc ng−îc lµ vÊn ®Ò khã mµ ta sÏ nghiªn cøu trong ch−¬ng nÇy. NhiÖm vô cña bµi to¸n lµ x¸c ®Þnh tÖp nghiÖm (θ1, θ2, ...,θ6,di*) khi ®· biÕt h×nh thÓ cña robot th«ng qua vect¬ cuèi T6 (kh¸i niÖm “h×nh thÓ” cña robot bao gåm kh¸i niÖm vÒ vÞ trÝ vµ h−íng cña kh©u chÊp hµnh cuèi : Configuration = Position + Orientation). Còng cÇn l−u ý r»ng, ®a sè c¸c robot cã bé Teach pendant lµ thiÕt bÞ d¹y häc, cã nhiÖm vô ®iÒu khiÓn robot ®Õn c¸c vÞ trÝ mong muèn trong ®éng tr×nh ®Çu tiªn (®iÒu khiÓn ®iÓm : Point to point ), c¸c chuyÓn ®éng nÇy sÏ ®−îc ghi l¹i vµo bé nhí trung t©m (CPU) cña robot hoÆc m¸y tÝnh ®iÒu khiÓn robot, sau ®ã robot cã thÓ thùc hiÖn l¹i ®óng c¸c ®éng t¸c ®· ®−îc häc. Trong qu¸ tr×nh ho¹t ®éng cña robot, nÕu d¹ng quÜ ®¹o ®−êng ®i kh«ng quan träng th× kh«ng cÇn lêi gi¶i cña bµi to¸n ®éng häc ng−îc. 4.1. C¸c ®iÒu kiÖn cña bµi to¸n ®éng häc ng−îc : TS. Ph¹m §¨ng Ph−íc
Robot c«ng nghiÖp 43 ViÖc gi¶i bµi to¸n ®éng häc ng−îc cña robot cÇn tho¶ m·n c¸c ®iÒu kiÖn sau : 4.1.1. §iÒu kiÖn tån t¹i nghiªm : §iÒu kiÖn nÇy nh»m kh¼ng ®Þnh : Cã Ýt nhÊt mét tÖp nghiÖm (θ1,θ2, ...,θ6,di*) sao cho robot cã h×nh thÓ cho tr−íc. (“H×nh thÓ” lµ kh¸i niÖm m« t¶ t−êng minh cña vect¬ cuèi T6 c¶ vÒ vÞ trÝ vµ h−íng). 4.1.2. §iÒu kiÖn duy nhÊt cña tÖp nghiÖm : Trong khi x¸c ®Þnh c¸c tÖp nghiÖm cÇn ph©n biÖt râ hai lo¹i nghiÖm : + NghiÖm to¸n (Mathematical Solution) : C¸c nghiÖm nÇy tho¶ m·n c¸c ph−¬ng tr×nh cho tr−íc cña T6. + NghiÖm vËt lý (Physical Solution) : lµ c¸c tÖp con cña nghiÖm to¸n, phô thuéc vµo c¸c giíi h¹n vËt lý (giíi h¹n vÒ gãc quay, kÝch th−íc ...) nh»m x¸c ®Þnh tÖp nghiÖm duy nhÊt. ViÖc gi¶i hÖ ph−¬ng tr×nh ®éng häc cã thÓ ®−îc tiÕn hµnh theo hai ph−¬ng ph¸p c¬ b¶n sau : + Ph−¬ng ph¸p gi¶i tÝch (Analytical Method) : t×m ra c¸c c«ng thøc hay c¸c ph−¬ng tr×nh to¸n gi¶i tÝch biÓu thÞ quan hÖ gi÷a c¸c gi¸ trÞ cña kh«ng gian biÕn trôc vµ c¸c th«ng sè kh¸c cña bé th«ng sè DH. + Ph−¬ng ph¸p sè (Numerical Method) : T×m ra c¸c gi¸ trÞ cña tÖp nghiÖm b»ng kÕt qu¶ cña mét qu¸ tr×nh lÆp. 4.2. Lêi gi¶i cña phÐp biÕn ®æi Euler : Trong ch−¬ng 3 ta ®· nghiªn cøu vÒ phÐp biÕn ®æi Euler ®Ó m« t¶ h−íng cña kh©u chÊp hµnh cuèi : Euler (Φ,θ,ψ) = Rot(z, Φ) Rot(y, θ) Rot(z, ψ) TÖp nghiÖm muèn t×m lµ c¸c gãc Φ, θ, ψ khi ®· biÕt ma trËn biÕn ®æi ®ång nhÊt T6 (cßn gäi lµ ma trËn vect¬ cuèi), NÕu ta cã c¸c gi¸ trÞ sè cña c¸c phÇn tö trong ma trËn T6 th× cã thÓ x¸c ®Þnh ®−îc c¸c gãc Euler Φ, θ, ψ thÝch hîp. Nh− vËy ta cã : Euler (Φ,θ,ψ) = T6 (4-1) VÕ tr¸i cña ph−¬ng tr×nh (4-1) ®· ®−îc biÓu diÔn b»ng c«ng thøc (3-4) , nªn ta cã : cosΦCosθcosψ - sinΦsinψ -cosΦCosθsinψ - sinΦcosψ cosΦsinθ 0 sinΦCosθcosψ + cosΦsinψ -sinΦCosθsinψ + cosΦcosψ sinΦsinθ 0 = -sinθ cosψ sinθ sinψ cosθ 0 0 0 0 1 nxOxaxpxnyOyaypy(4-2) nzOzazpz0 0 0 1 LÇn l−ît cho c©n b»ng c¸c phÇn tö t−¬ng øng cña hai ma trËn trong ph−¬ng tr×nh (4-2) ta cã c¸c ph−¬ng tr×nh sau : TS. Ph¹m §¨ng Ph−íc
Robot c«ng nghiÖp 44 nx = cosΦCosθcosψ - sinΦsinψ (4.3) ny = sinΦCosθcosψ + cosΦsinψ (4-4) nz = -sinθ cosψ (4-5) Ox = -cosΦCosθsinψ - sinΦcosψ (4-6) Oy = -sinΦCosθsinψ + cosΦcosψ (4-7) Oz = sinθ sinψ (4-8) ax = cosΦsinθ (4-9) ay = sinΦsinθ (4-10) az = cosθ (4-11) Ta thö gi¶i hÖ ph−¬ng tr×nh nÇy ®Ó t×m Φ, θ, ψ nh− sau : Tõ (4-11) ta cã θ = cos-1(az) (4-12) Tõ (4-9) ta cã Φ = cos-1(ax / sinθ) (4-13) Tõ (4-5) vµ (4-12) ta cã ψ = cos-1(-nz / sinθ) (4-14) Trong ®ã ta ®· dïng ký hiÖu cos-1 thay cho hµm arccos. Nh−ng c¸c kÕt qu¶ ®· gi¶i ë trªn ch−a dïng ®−îc v× c¸c lý do d−íi ®©y : + Hµm arccos kh«ng chØ biÓu hiÖn cho mét gãc ch−a x¸c ®Þnh mµ vÒ ®é chÝnh x¸c nã l¹i phô thuéc v¸o chÝnh gãc ®ã, nghÜa lµ : cosθ = cos(-θ) : θ ch−a ®−îc x¸c ®Þnh duy nhÊt. dcosd = 00,180θθ: θ x¸c ®Þnh kh«ng chÝnh x¸c. + Trong lêi gi¶i ®èi víi Φ vµ ψ mét lÇn n÷a chóng ta l¹i dïng hµm arccos vµ chia cho sinθ, ®iÒu nÇy dÉn tíi sù mÊt chÝnh x¸c khi θ cã gi¸ trÞ l©n cËn 0. + C¸c ph−¬ng tr×nh (4-13) vµ (4-14) kh«ng x¸c ®Þnh khi θ = 0 hoÆc θ = ±1800. Do vËy chóng ta cÇn ph¶i cÈn thËn h¬n khi chän lêi gi¶i. §Ó x¸c ®Þnh c¸c gãc khi gi¶i bµi to¸n ng−îc cña robot ta ph¶i dïng hµm arctg2 (y,x) (hµm arctang hai biÕn). Hµm arctg2 nh»m môc ®Ých x¸c ®Þnh ®−îc gãc thùc - duy nhÊt khi xÐt dÊu cña hai biÕn y vµ x. Hµm sè tr¶ vÒ gi¸ trÞ gãc trong kho¶ng -π≤θ < π. θxy X- Y-X+ Y- H×nh 4.1 : Hµm arctg2(y,x) X- Y+X+ Y+ VÝ dô : arctg2(-1/-1)= -1350, trong khi arctg2(1/1) = 450 Hµm nÇy x¸c ®Þnh ngay c¶ khi x hoÆc y b»ng 0 vµ cho kÕt qu¶ ®óng. (Trong mét sè ng«n ng÷ lËp tr×nh nh−Matlab, turbo C++, Maple hµm arctg2(y,x) ®· cã s¼n trong th− viÖn) TS. Ph¹m §¨ng Ph−íc
Robot c«ng nghiÖp 45 §Ó cã thÓ nhËn ®−îc nh÷ng kÕt qu¶ chÝnh x¸c cña bµi to¸n Euler, ta thùc hiÖn thñ thuËt to¸n häc sau : Nh©n T6 víi ma trËn quay nghÞch ®¶o Rot(z, Φ)-1,ta cã: Rot(z, Φ)-1 T6 = Rot(y, θ) Rot(z, ψ) (4-15) VÕ tr¸i cña ph−¬ng tr×nh (4-15) lµ mét hµm sè cña ma trËn T vµ gãc quay Φ. Ta thùc hiÖn phÐp nh©n ma trËn ë vÕ ph¶i cña (4-15), t×m ra c¸c phÇn tö cña ma trËn cã gi¸ trÞ b»ng 0 hoÆc b»ng h»ng sè, cho c¸c phÇn tö nÇy c©n b»ng víi nh÷ng phÇn tö t−¬ng øng cña ma trËn ë vÕ tr¸i, cô thÓ tõ (4-15) ta cã : cosΦ sinΦ 0 0 nxOxaxpxCosθcosψ -Cosθ sinψ sinθ 0 -sinΦ cosΦ 0 0 nyOyaypy=sinψ cosψ 0 0 0 0 1 0 nzOzazpz -sinθ cosψ sinθ sinψ Cosθ 0 0 0 0 1 0 0 0 1 0 0 0 1 (4-16) TÝch hai ma trËn ë vÕ tr¸i cña ph−¬ng tr×nh (4-16) lµ mét ma trËn mµ cã thÓ ®−îc viÕt gän l¹i b»ng c¸c ký hiÖu sau : f11(n) f11(O) f11(a) f11(p) f12(n) f12(O) f12(a) f12(p) f13(n) f13(O) f13(a) f13(p) 0 0 0 1 Trong ®ã : f11 = cosΦ x + sinΦ y (4-17) f12 = -sinΦ x + cosΦ y (4-18) f13 = z (4-19) vµ x, y, z lµ c¸c phÇn tö cña vect¬ x¸c ®Þnh bëi c¸c d÷ kiÖn f11, f12, f13, vÝ dô : f11(n) = cosΦ nx + sinΦ ny f12(O) = -sinΦ Ox + cosΦ Oy f13(a) = az Nh− vËy ph−¬ng tr×nh (4-16) cã thÓ ®−îc viÕt thµnh : f11(n) f11(O) f11(a) 0 Cosθcosψ -Cosθ sinψ sinθ0 f12(n) f12(O) f12(a) 0 =sinψ cosψ0 0 (4-20)f13(n) f13(O) f13(a) 0 -sinθ cosψ sinθ sinψ Cosθ0 0 0 0 1 0 0 0 1 Trong ®ã f11,f12, f13 ®· ®−îc ®Þnh nghÜa ë (4-17), (4-18) vµ (4-19). Khi tÝnh to¸n vÕ tr¸i, ta chó ý r»ng px, py, pz b»ng 0 v× phÐp biÕn ®æi Euler chØ toµn phÐp quay kh«ng chøa mét phÐp biÕn ®æi tÞnh tiÕn nµo, nªn f11(p) = f12(p) = f13(p) = 0. Tõ ph−¬ng tr×nh (4-20), cho c©n b»ng phÇn tö ë hµng 2 cét 3 ta cã : TS. Ph¹m §¨ng Ph−íc
Robot c«ng nghiÖp 46 f12(a) = -sinΦ ax + cosΦ ay = 0. (4-21) Céng hai vÕ víi sinΦ ax vµ chia cho cosΦ ax ta cã : tgaaxΦΦΦ==sincosy Gãc Φ cã thÓ x¸c ®Þnh b»ng hµm arctg hai biÕn : Φ = arctg2(ay, ax). Ta còng cã thÓ gi¶i ph−¬ng tr×nh (4-21) b»ng c¸ch céng hai vÕ víi -cosΦ ay råi chia hai vÕ cho -cosΦ ax, triÖt tiªu -ax ë vÕ tr¸i vµ cosΦ ë vÕ ph¶i, ta cã : tg-a-axΦΦΦ==sincosyTrong tr−êng hîp nÇy gãc Φ t×m ®−îc lµ : Φ = arctg2(-ay, -ax). Nh− vËy ph−¬ng tr×nh (4-21) cã mét cÆp nghiÖm c¸ch nhau 1800 (®©y lµ nghiÖm to¸n) vµ ta cã thÓ viÕt : Φ = arctg2(ay, ax) vµ Φ = Φ + 1800. (HiÓu theo c¸ch viÕt khi lËp tr×nh trªn m¸y tÝnh). NÕu c¶ ax vµ ay ®Òu b»ng 0 th× gãc Φ kh«ng x¸c ®Þnh ®−îc. §iÒu ®ã x¶y ra khi bµn tay chØ th¼ng lªn trªn hoÆc xuèng d−íi vµ c¶ hai gãc Φ vµ ψ t−¬ng øng víi cïng mét phÐp quay. §iÒu nÇy ®−îc coi lµ mét phÐp suy biÕn (degeneracy), trong tr−êng hîp nÇy ta cho Φ = 0. Víi gi¸ trÞ cña Φ nhËn ®−îc, c¸c phÇn tö ma trËn ë vÕ bªn tr¸i cña ph−¬ng tr×nh (4-20) sÏ ®−îc x¸c ®Þnh. TiÕp tôc so s¸nh c¸c phÇn tö cña hai ma trËn ta cã : f11(a) = cosΦ ax + sinΦ ay = sinθ. Vµ f13(a) = az = cosθ. VËy θ = arctg2(cosΦ ax + sinΦ ay, az) Khi c¶ hai hµm sin vµ cos ®Òu ®−îc x¸c ®Þnh nh− tr−êng hîp trªn, th× gãc th−êng ®−îc x¸c ®Þnh duy nhÊt vµ kh«ng x¶y ra tr−êng hîp suy biÕn nh− gãc Φ tr−íc ®©y. Còng tõ ph−¬ng tr×nh (4-20) ta cã : f12(n) = -sinΦ nx + cosΦ ny = sinψ f12(O) = -sinΦ Ox + cosΦ Oy = cosψ TS. Ph¹m §¨ng Ph−íc Tài liệu liên quan
Bài giảng FMS & CIM: Chương 2 - Các thành phần cơ bản trong FMS
167 trangBài giảng Robot công nghiệp: Chương 3 - Động học Robot
87 trangBài giảng Robot công nghiệp: Chương 2 - Sơ đồ cấu trúc của Robot
31 trangBài giảng Robot công nghiệp: Chương 1 - Tổng quan về Robot công nghiệp
23 trangBài giảng Tự động hóa robot hàn - Trường CĐ Công nghiệp và Xây dựng
57 trangBài giảng Chương 2: Cấu tạo Robot công nghiệp
22 trangBài giảng Robot công nghiệp: Chương 8 - TS. Phạm Đăng Phước
7 trangBài giảng Vận hành robot ABB: Chương 2
34 trangBài giảng Vận hành robot ABB: Chương 1
17 trangBài giảng Robot công nghiệp (7 chương)
244 trangTài liêu mới
Báo cáo bài tập: Mô phỏng quá trình truyền động qua mạng CAN giữa hai ECU trong hệ thống điều khiển động cơ trên Simulink
14 trangTài liệu Hướng dẫn lập trình robot ABB
82 trangPhân tích nét đặc thù và đề xuất hướng nghiên cứu điều khiển hệ thống Multi-robot
6 trangTài liệu Hướng dẫn thiết kế hệ thống cơ điện tử
5 trangMulti-objective optimization of magnetorheological mount considering optimal damping force and maximum adjustable coefficient
20 trangFrequency-dependent Bouc–Wen modeling of magnetorheological damper using harmonic balance approach
24 trangTài liệu Thực hành Robot công nghiệp: Lập trình Universal Robot UR3
W 102 trangBài giảng Thiết kế hệ thống cơ điện tử
156 trangBài giảng Robot và ứng dụng: Chương 3 - Động lực học robot
71 trangBài giảng Robot và ứng dụng: Chương 2 - Động học robot
186 trangBài giảng Robot và ứng dụng: Chương 1 - Tổng quan về robot và ứng dụng
44 trangBài giảng Kỹ thuật robot
72 trangCâu hỏi ôn tập môn Cơ sở xử lý ảnh số
W 6 trangĐồ án tốt nghiệp: Phân loại sản phẩm theo cân nặng và màu sắc dùng xử lý ảnh kết hợp PLC S7 1200
W 96 trangCâu hỏi ôn tập Robot công nghiệp
W 4 trangAI tóm tắt
- Giúp bạn nắm bắt nội dung tài liệu nhanh chóng!Giới thiệu tài liệu
Đối tượng sử dụng
Từ khoá chính
Nội dung tóm tắt
Giới thiệu
Về chúng tôi
Việc làm
Quảng cáo
Liên hệ
Chính sách
Thoả thuận sử dụng
Chính sách bảo mật
Chính sách hoàn tiền
DMCA
Hỗ trợ
Hướng dẫn sử dụng
Đăng ký tài khoản VIP
Zalo/Tel:093 303 0098
Email:[email protected]
Phương thức thanh toán
Theo dõi chúng tôi
Youtube
TikTok
Chịu trách nhiệm nội dung: Nguyễn Công Hà Doanh nghiệp quản lý: Công ty TNHH Tài Liệu trực tuyến Vi Na - GCN ĐKDN: 0307893603 Địa chỉ: 54A Nơ Trang Long, P. Bình Thạnh, TP.HCM - Điện thoại: 0283 5102 888 - Email: [email protected]ấy phép Mạng Xã Hội số: 670/GP-BTTTT cấp ngày 30/11/2015 Từ khóa » Chương 4 Robot Công Nghiệp
-
Bài Giảng Robot Công Nghiệp: Chương 4 - Nhữ Quý Thơ (ĐH Công ...
-
Giáo Trình Robot Công Nghiệp Chuong 4
-
Robot Công Nghiệp - Chương 4 - Tài Liệu Text - 123doc
-
Bài Giảng Robot Công Nghiệp: Chương 4 - Nhữ Quý Thơ (ĐH Công ...
-
Robot Công Nghiệp - Chương 4 - Tài Liệu đại Học
-
Robot Công Nghiệp - Chương 4 - Sangtaotrongtamtay
-
Robot Cong Nghiep Chuong 4 2895 - Quy Hoạch Tuyến Tính - StuDocu
-
Bai Giang ROBOT Cong Nghiep - SlideShare
-
Lý Thuyết điều Khiển Robot Công Nghiệp.pdf (.docx) - Tài Liệu Ngon
-
Bài Giảng Robot Công Nghiệp - Chương II Động Học Tay Máy
-
(DOC) Robot | Doan Nguyen
-
[PDF] đề Cương Chi Tiết Học Phần: Thực Hành Kỹ Thuật Robot
-
Bài Tập Chương 3,4 Môn... - Thông Tin Môn Học Của Thầy Bắc
-
ROBOT CÔNG NGHIỆP Bộ Môn Máy & Tự động Hóa. - Ppt κατέβασμα