Sách Giải Bài Tập Toán Lớp 10 Bài 2: Phương Trình Đường Tròn
Có thể bạn quan tâm
Xem toàn bộ tài liệu Lớp 10: tại đây
Xem thêm các sách tham khảo liên quan:
- Giải Sách Bài Tập Toán Lớp 10
- Sách Giáo Viên Đại Số Lớp 10
- Sách giáo khoa đại số 10
- Sách giáo khoa hình học 10
- Sách Giáo Viên Hình Học Lớp 10
- Sách giáo khoa đại số 10 nâng cao
- Sách Giáo Viên Đại Số Lớp 10 Nâng Cao
- Giải Toán Lớp 10 Nâng Cao
- Sách giáo khoa hình học 10 nâng cao
- Sách Giáo Viên Hình Học Lớp 10 Nâng Cao
- Sách Bài Tập Đại Số Lớp 10
- Sách Bài Tập Hình Học Lớp 10
- Sách Bài Tập Đại Số Lớp 10 Nâng Cao
- Sách Bài Tập Hình Học Lớp 10 Nâng Cao
Sách giải toán 10 Bài 2: Phương trình đường tròn giúp bạn giải các bài tập trong sách giáo khoa toán, học tốt toán 10 sẽ giúp bạn rèn luyện khả năng suy luận hợp lý và hợp logic, hình thành khả năng vận dụng kết thức toán học vào đời sống và vào các môn học khác:
Trả lời câu hỏi Toán 10 Hình học Bài 2 trang 82: Cho hai điểm A(3; -4) và B(-3; 4).
Viết phương trình đường tròn (C) nhận AB là đường kính.
Lời giải
Gọi I là đường tròn nhận AB là đường kính
⇒ I là trung điểm của AB ⇒ I (0; 0)
⇒ R = AB/2 = 5
Phương trình đường tròn (C) nhận AB là đường kính là:
x2 + y2 = 25
Trả lời câu hỏi Toán 10 Hình học Bài 2 trang 82: Hãy cho biết phương trình nào trong các phương trình sau đây là phương trình đường tròn:
2x2 + y2 – 8x + 2y – 1 = 0;
x2 + y2 + 2x – 4y – 4 = 0;
x2 + y2 – 2x – 6y + 20 = 0;
x2 + y2 + 6x + 2y + 10 = 0.
Lời giải
+ 2x2 + y2 – 8x + 2y – 1 = 0 không phải phương trình đường tròn vì hệ số của x2 khác hệ số của y2.
+ Phương trình x2 + y2 + 2x – 4y – 4 = 0 có :
a = –1; b = 2; c = –4 ⇒ a2 + b2 – c = 9 > 0
⇒ phương trình trên là phương trình đường tròn.
+ Phương trình x2 + y2 – 2x – 6y + 20 = 0 có :
a = 1; b = 3; c = 20 ⇒ a2 + b2 – c = –10 < 0
⇒ phương trình trên không là phương trình đường tròn.
+ Phương trình x2 + y2 + 6x + 2y + 10 = 0 có :
a = –3; b = –1; c = 10 ⇒ a2 + b2 – c = 0 = 0
⇒ phương trình trên không là phương trình đường tròn.
Bài 1 (trang 83 SGK Hình học 10): Tìm tâm và bán kính của các đường tròn sau:
a, x2 + y2– 2x – 2y – 2 = 0
b, 16x2 + 16y2 + 16x – 8y -11 = 0
c, x2 + y2 – 4x + 6y – 3 = 0
Lời giải
Cách 1 : Xác định các hệ số a, b, c.
a) x2 + y2 – 2x – 2y – 2 = 0 có hệ số a = 1 ; b = 1 ; c = –2
⇒ tâm I (1; 1) và bán kính
b) 16x2 + 16y2 + 16x – 8y –11 = 0
⇒ Đường tròn có tâm
, bán kínhc) x2 + y2 – 4x + 6y – 3 = 0
⇔ x2 + y2 – 2.2x – 2.(-3).x – 3 = 0
có hệ số a = 2, b = -3,c = -3
⇒ Đường tròn có tâm I(2 ; –3), bán kính
Cách 2 : Đưa về phương trình chính tắc :
a) x2 + y2 – 2x – 2y – 2 = 0
⇔ (x2 – 2x + 1) + (y2 – 2y +1) = 4
⇔(x-1)2 + (y-1)2 = 4
Vậy đường tròn có tâm I(1 ; 1) và bán kính R = 2.
b) 16x2 + 16y2 + 16x – 8y – 11 = 0
Vậy đường tròn có tâm và bán kính R = 1.
c) x2 + y2 – 4x + 6y -3 = 0
⇔ (x2 – 4x + 4) + (y2 + 6y + 9) = 4 + 9 + 3
⇔ (x – 2)2 + (y + 3)2 = 16
Vậy đường tròn có tâm I( 2 ; –3) và bán kính R = 4.
Bài 2 (trang 83 SGK Hình học 10): Lập phương trình đường tròn (C) trong các trường hợp sau:
a, (C) có tâm I(-2; 3) và đi qua M(2; -3);
b, (C) có tâm I(-1; 2) và tiếp cúc với đường thẳng x – 2y +7 =0
c, (C) có đường kính AB với A = (1; 1) và B = (7; 5).
Lời giải
a) (C) có tâm I và đi qua M nên bán kính R = IM
Vậy đường tròn (C) : (x + 2)2 + (y – 3)2 = 52.
b) (C) tiếp xúc với (Δ) : x – 2y + 7 = 0
⇒ d(I; Δ) = R
Vậy đường tròn (C) :
c) (C) có đường kính AB nên (C) có :
+ tâm I là trung điểm của AB
Vậy đường tròn (C) : (x – 4)2 + (y – 3)2 = 13.
Bài 3 (trang 84 SGK Hình học 10): Lập phương trình đường tròn đi qua ba điểm:
a, A(1; 2), B(5; 2), C(1; -3)
b, M(-2; 4), N(5; 5), P(6; -2)
Lời giải
Gọi phương trình đường tròn (C) là: x2 + y2 – 2ax – 2by + c = 0.
a) A(1; 2) ∈ (C) ⇔ 12 + 22 – 2.a.1 – 2.b.2 + c = 0 ⇔ 2a + 4b – c = 5 (1)
B(5; 2) ∈ (C) ⇔ 52 + 22 – 2.5.x – 2.2.y + c = 0 ⇔ 10x + 4y – c = 29 (2)
C(1; –3) ∈ (C) ⇔ 12 + (–3)2 – 2.a.1 – 2.b.(–3) + c = 0 ⇔ 2a – 6b – c = 10 (3)
Từ (1), (2) và (3) ta có hệ phương trình :
Giải hệ phương trình trên ta được nghiệm a = 3, b = –1/2, c = –1.
Vậy đường tròn đi qua ba điểm A, B, C là : x2 + y2 – 6x + y – 1 = 0.
b)
M(–2 ; 4) ∈ (C) ⇔ (–2)2 + 42 – 2.a.(–2) – 2.b.4 + c = 0 ⇔ 4a – 8b + c = –20 (1)
N(5; 5) ∈ (C) ⇔ 52 + 52 – 2.a.5 – 2.b.5 + c = 0 ⇔ 10a + 10b – c = 50 (2)
P(6; –2) ∈ (C) ⇔ 62 + (–2)2 – 2.a.6 – 2.b.(–2) + c = 0 ⇔ 12a – 4b – c = 40 (3)
Từ (1), (2) và (3) ta có hệ phương trình:
Giải hệ phương trình trên ta được nghiệm a = 2, b = 1, c = –20.
Vậy đường tròn đi qua ba điểm M, N, P là : x2 + y2 – 4x – 2y – 20 = 0.
Bài 4 (trang 84 SGK Hình học 10): Lập phương trình đường tròn tiếp xúc với hai trục tọa độ Ox, Oy và qua điểm M(2; 1).
Lời giải
Gọi đường tròn cần tìm là (C) có tâm I(a ; b) và bán kính bằng R.
(C) tiếp xúc với Ox ⇒ R = d(I ; Ox) = |b|
(C) tiếp xúc với Oy ⇒ R = d(I ; Oy) = |a|
⇒ |a| = |b|
⇒ a = b hoặc a = –b.
+ TH1: Xét a = b thì I(a; a), R = |a|
Ta có: M ∈ (C) ⇒ IM = R ⇒ IM2 = R2
⇒ (2 – a)2 + (1 – a)2 = a2
⇔ a2 – 6a + 5 = 0
⇔ a = 1 hoặc a = 5.
* a = 1 ⇒ I(1; 1) và R = 1.
Ta có phương trình đường tròn (C): (x – 1)2 + (y – 1)2 = 1.
* a = 5 ⇒ I(5; 5), R = 5.
Ta có phương trình đường tròn (C) : (x – 5)2 + (y – 5)2 = 25.
+ TH2: Xét a = –b thì I(a; –a), R = |a|
Ta có: M ∈ (C) ⇒ IM = R ⇒ IM2 = R2
⇒ (2 – a)2 + (1 + a)2 = a2
⇔ a2 – 2a + 5 = 0 (Phương trình vô nghiệm)
Vậy có hai đường tròn thỏa mãn là: (C): (x – 1)2 + (y – 1)2 = 1 hoặc (C) : (x – 5)2 + (y – 5)2 = 25.
Bài 5 (trang 84 SGK Hình học 10): Lập phương trình của đường tròn tiếp xúc với các trục tọa độ và có tâm nằm trên đường thẳng 4x – 2y – 8 = 0
Lời giải
Bài 6 (trang 84 SGK Hình học 10): Cho đường tròn C có phương trình: x2 + y2 – 4x + 8y – 5 = 0
a, Tìm tọa độ tâm và bán kính của (C)
b, Viết phương trình tiếp tuyến với (C) đi qua điểm A(-1; 0)
c, Viết phương trình tiếp tuyến với (C) vuông góc với đường thẳng: 3x – 4y + 5 = 0.
Lời giải
a) x2 + y2 – 4x + 8y – 5 = 0
⇔ (x2 – 4x + 4) + (y2 + 8y + 16) = 25
⇔ (x – 2)2 + (y + 4)2 = 25.
Vậy (C) có tâm I(2 ; –4), bán kính R = 5.
b) Thay tọa độ điểm A vào phương trình đường tròn ta thấy:
(–1 – 2)2 + (0 + 4)2 = 32 + 42 = 25 = R2
⇒ A thuộc đường tròn (C)
⇒ tiếp tuyến (d’) cần tìm tiếp xúc với (C) tại A
⇒ (d’) là đường thẳng đi qua A và vuông góc với IA
⇒ (d’) nhận là một vtpt và đi qua A(–1; 0)
⇒ phương trình (d’): 3x – 4y + 3 = 0.
c) Gọi tiếp tuyến vuông góc với (d) : 3x – 4y + 5 = 0 cần tìm là (Δ).
(d) có
là một vtpt(Δ) ⊥ (d) ⇒ (Δ) nhận là một vtpt
⇒ (Δ): 4x + 3y + c = 0.
(C) tiếp xúc với (Δ) ⇒ d(I; Δ) = R
Vậy (Δ) : 4x + 3y + 29 = 0 hoặc 4x + 3y – 21 = 0.
Bài giải này có hữu ích với bạn không?
Bấm vào một ngôi sao để đánh giá!
Action: Post ID: Post Nonce: ☆ ☆ ☆ ☆ ☆ Processing your rating... Đánh giá trung bình {{avgRating}} / 5. Số lượt đánh giá: {{voteCount}} {{successMsg}} {{#errorMsg}} {{.}} {{/errorMsg}} There was an error rating this post!Đánh giá trung bình 5 / 5. Số lượt đánh giá: 975
Chưa có ai đánh giá! Hãy là người đầu tiên đánh giá bài này.
Từ khóa » Bài Tập Tự Luận Phương Trình đường Tròn Lớp 10
-
Các Dạng Bài Tập Toán Về Phương Trình đường Tròn - Toán Lớp 10
-
Bài Tập Phương Trình đường Tròn Lớp 10 Cực Hay - TÀI LIỆU RẺ
-
Các Dạng Bài Tập Về Phương Trình đường Tròn - Toán 10
-
Phương Trình đường Tròn: Lý Thuyết Và Các Dạng Bài Tập Chuyên đề ...
-
Phương Trình đường Tròn Và Các Dạng Bài Tập Có Lời Chuẩn 100%
-
Chuyên đề Phương Trình đường Tròn Dạng Toán Và Bài Tập - 123doc
-
Phương Trình đường Tròn - Bài Tập Toán Lớp 10 - Itoan
-
Phương Trình đường Tròn Lớp 10 Chuẩn Nhất - CungHocVui
-
30 Bài Tập Phương Trình đường Tròn Mức độ Thông Hiểu
-
Chuyên đề Phương Trình đường Tròn OXY - Luyện Thi đại Học
-
Phương Trình đường Tròn – Sách Bài Tập Toán 10 – Bài Tập Hình Học
-
Bài Tập Về Phương Trình đường Tròn
-
Phương Trình đường Tròn - Toán 10 - Thầy Nguyễn Công Chính