SGK Toán 8 - Bài 7. Giải Bài Toán Bằng Cách Lập Phương Trình (tiếp)

Giải Bài Tập

Giải Bài Tập, Sách Giải, Giải Toán, Vật Lý, Hóa Học, Sinh Học, Ngữ Văn, Tiếng Anh, Lịch Sử, Địa Lý

  • Home
  • Lớp 1,2,3
    • Lớp 1
    • Giải Toán Lớp 1
    • Tiếng Việt Lớp 1
    • Lớp 2
    • Giải Toán Lớp 2
    • Tiếng Việt Lớp 2
    • Văn Mẫu Lớp 2
    • Lớp 3
    • Giải Toán Lớp 3
    • Tiếng Việt Lớp 3
    • Văn Mẫu Lớp 3
    • Giải Tiếng Anh Lớp 3
  • Lớp 4
    • Giải Toán Lớp 4
    • Tiếng Việt Lớp 4
    • Văn Mẫu Lớp 4
    • Giải Tiếng Anh Lớp 4
  • Lớp 5
    • Giải Toán Lớp 5
    • Tiếng Việt Lớp 5
    • Văn Mẫu Lớp 5
    • Giải Tiếng Anh Lớp 5
  • Lớp 6
    • Soạn Văn 6
    • Giải Toán Lớp 6
    • Giải Vật Lý 6
    • Giải Sinh Học 6
    • Giải Tiếng Anh Lớp 6
    • Giải Lịch Sử 6
    • Giải Địa Lý Lớp 6
    • Giải GDCD Lớp 6
  • Lớp 7
    • Soạn Văn 7
    • Giải Bài Tập Toán Lớp 7
    • Giải Vật Lý 7
    • Giải Sinh Học 7
    • Giải Tiếng Anh Lớp 7
    • Giải Lịch Sử 7
    • Giải Địa Lý Lớp 7
    • Giải GDCD Lớp 7
  • Lớp 8
    • Soạn Văn 8
    • Giải Bài Tập Toán 8
    • Giải Vật Lý 8
    • Giải Bài Tập Hóa 8
    • Giải Sinh Học 8
    • Giải Tiếng Anh Lớp 8
    • Giải Lịch Sử 8
    • Giải Địa Lý Lớp 8
  • Lớp 9
    • Soạn Văn 9
    • Giải Bài Tập Toán 9
    • Giải Vật Lý 9
    • Giải Bài Tập Hóa 9
    • Giải Sinh Học 9
    • Giải Tiếng Anh Lớp 9
    • Giải Lịch Sử 9
    • Giải Địa Lý Lớp 9
  • Lớp 10
    • Soạn Văn 10
    • Giải Bài Tập Toán 10
    • Giải Vật Lý 10
    • Giải Bài Tập Hóa 10
    • Giải Sinh Học 10
    • Giải Tiếng Anh Lớp 10
    • Giải Lịch Sử 10
    • Giải Địa Lý Lớp 10
  • Lớp 11
    • Soạn Văn 11
    • Giải Bài Tập Toán 11
    • Giải Vật Lý 11
    • Giải Bài Tập Hóa 11
    • Giải Sinh Học 11
    • Giải Tiếng Anh Lớp 11
    • Giải Lịch Sử 11
    • Giải Địa Lý Lớp 11
  • Lớp 12
    • Soạn Văn 12
    • Giải Bài Tập Toán 12
    • Giải Vật Lý 12
    • Giải Bài Tập Hóa 12
    • Giải Sinh Học 12
    • Giải Tiếng Anh Lớp 12
    • Giải Lịch Sử 12
    • Giải Địa Lý Lớp 12
Trang ChủLớp 8Giải Bài Tập Toán 8Sách Giáo Khoa - Toán 8 Tập 2Bài 7. Giải bài toán bằng cách lập phương trình (tiếp) SGK Toán 8 - Bài 7. Giải bài toán bằng cách lập phương trình (tiếp)
  • Bài 7. Giải bài toán bằng cách lập phương trình (tiếp) trang 1
  • Bài 7. Giải bài toán bằng cách lập phương trình (tiếp) trang 2
  • Bài 7. Giải bài toán bằng cách lập phương trình (tiếp) trang 3
§7. Giải bài toán bàng cách lập phương trình (tiếp) Thế mới biết việc chọn ẩn số cũng rất quan trọng. Qua các bài toán trên, ta thấy : Để lập được phương trình, ta cần khéo chọn ẩn số và tìm sự liên quan giữa các đại lượng trong bài toán. Lập bảng biểu diễn các đại lượng trong bài toán theo ẩn số đã chọn là một phương pháp thường dùng. Ví dụ. Một xe máy khởi hành từ Hà Nội đi Nam Định với vận tốc 35km/h. Sau đó 24 phút, trên cùng tuyến đường đó, một ôtô xuất phát từ Nam Định đi Hà Nội với vận tốc 45km/h. Biết quãng đường Nam Định - Hà Nội dài 90km. Hỏi sau bao lâu, kể từ khi xe máy khởi hành, hai xe gặp nhau ? Phân tích bài toán : Hai đối tượng tham gia vào bài toán là ôtô và xe máy, còn các đại lượng liên quan là vận tốc (đã biết), thời gian và quãng đường đi (chưa biết). Đối với từng đối tượng, các đại lượng ấy quan hệ với nhau theo công thức : Quãng đường đi (km) = Vận tốc (km/h) X Thời gian đi (h). Nếu chọn một đại lượng chưa biết làm ẩn, chẳng hạn, gọi thời gian từ lúc xe máy khởi hành đến lúc hai xe gặp nhau là X giờ, ta có thể lập bảng để biểu diễn các đại lượng trong bài toán như sau (trước hết đổi 24 phút thành — giờ): Vận tốc (km/h) Thời gian đi (h) Quãng đường đi (km) Xe máy 35 X 35x Ôtô 45 2 X 5 Hai xe (đi ngược chiều) gặp nhau nghĩa là đến lúc đó tổng quãng đường hai xe đi được đúng bằng quãng đường Nam Định - Hà Nội. Do đó 35x+ 45 (x - = 90. Đó chính là phương trình cần tìm. Giải : Gọi thời gian từ lúc xe máy khởi hành đến lúc hai xe gặp nhau là X (h). Điểu kiện thích hợp của X là X > —. Trong thời gian đó, xe máy đi được quãng đường là 35x (km). . Vì ôtô xuất phát sau xe máy 24 phút (tức là — giờ) nên ôtô đi trong 2 [ 2 (h) và đi được quãng đường là 451 X - 5 V 5- Đến lúc hai xe gặp nhau, tổng qủãng đường chúng đi được đúng bằng quãng đường Nam Định - Hà Nội (dài 90km) nên ta có phương trình 35x + 45^x - |j = 90. Giải phương trình : 35x + 45^'x - 1^ = 90 o 35x + 45x - 18 = 90 « 80x = 108 108 27 X = 80 20 Giá trị này phù hợp với điều kiện của ẩn. Vậy thời gian để hai xe gặp nhau 27 , , . .. là —- giờ, tức là 1 giờ 21 phút, ke từ lúc xe máy khởi hành. Trong Ví dụ trên, hãy thử chọn ẩn số theo cách khác : Gọi s (km) là quãng đường từ Hà Nội đến điểm gặp nhau của hai xe. Điền vào bảng sau rồi lập phương trình với ẩn sốs : Vận tốc (km/h) Quãng đường đi (km) Thời gian đi (h) Xe máy s Ôtô Giải phương trình nhận được rồi suy ra đáp số của bài toán. So sánh hai cách chọn ẩn, em thấy cách nào cho lời giải gọn hơn ? 47. 48. 49. đó, để kịp đến B đúng thời giản đã định, người đó phải tăng vận tốc thêm 6km/h. Tính quãng đường AB. Bà An gửi vào quỹ tiết kiệm X nghìn đồng với lãi suất mỗi tháng là a% (a là một số cho trước) và lãi tháng này được tính gộp vào vốn cho tháng sau. Hãy viết biểu thức biểu thị: + Số tiền lãi sau tháng thứ nhất; + Số tiền (cả gốc lẫn lãi) có được sau tháng thứ nhất; + Tổng số tiền lãi có được sau tháng thứ hai. Nếu lãi suất là 1,2% (tức là a = 1,2) và sau 2 tháng tổng số tiền lãi là 48,288 nghìn đồng, thì lúc đầu bà An đã gửi bao nhiêu tiền tiết kiệm ? Năm ngoái, tổng số dân'của hai tỉnh A và B là 4 triệu. Năm nay, dân số của tỉnh A tăng thêm 1,1%, còn dân số của tỉnh B tăng thêm 1,2%. Tuy vậy, số dân của tỉnh A năm nay vẫn nhiều hơn tỉnh B là 807 200 người. Tính số dân năm ngoái của mõi tỉnh. Đố. Lan có một miếng bìa hình tam giác ABC vuông tại A, cạnh AB = 3cm. Lan tính rằng nếu cắt từ miếng bìa đó ra một hình chữ nhật có chiều dài 2cm như hình 5 thì hình chữ nhật ấy có diện tích bằng một nửa diện tích của miếng bìa ban đầu. Tính độ dài cạnh AC của tam giác ABC.

Các bài học tiếp theo

  • Bài đọc thêm
  • Ôn tập chương III
  • Bài 1. Liên hệ giữa thứ tự và phép cộng
  • Bài 2. Liên hệ giữa thứ tự và phép nhân
  • Bài 3. Bất phương trình một ẩn
  • Bài 4. Bất phương trình bậc nhất một ẩn
  • Bài 5. Phương trình chứa dấu giá trị tuyệt đối
  • Ôn tập chương IV
  • Bài 1. Định lí Ta - lét trong tam giác
  • Bài 2. Định lí đảo và hệ quả của định lí Ta - lét

Các bài học trước

  • Bài 6. Giải bài toán bằng cách lập phương trình
  • Bài 5. Phương trình chứa ẩn ở mẫu
  • Bài 4. Phương trình tích
  • Bài 3. Phương trình đưa được về dạng ax + b = 0
  • Bài 2. Phương trình bậc nhất một ẩn và cách giải
  • Bài 1. Mở đầu về phương trình

Tham Khảo Thêm

  • Giải Bài Tập Toán 8 Tập 1
  • Giải Bài Tập Toán 8 Tập 2
  • Giải Bài Tập Toán Lớp 8 - Tập 1
  • Giải Bài Tập Toán Lớp 8 - Tập 2
  • Giải Toán 8 - Tập 1
  • Giải Toán 8 - Tập 2
  • Sách Giáo Khoa - Toán 8 Tập 1
  • Sách Giáo Khoa - Toán 8 Tập 2(Đang xem)

Sách Giáo Khoa - Toán 8 Tập 2

  • PHẦN ĐẠI SỐ
  • Chương III. PHƯƠNG TRÌNH BẬC NHẤT MỘT ẨN
  • Bài 1. Mở đầu về phương trình
  • Bài 2. Phương trình bậc nhất một ẩn và cách giải
  • Bài 3. Phương trình đưa được về dạng ax + b = 0
  • Bài 4. Phương trình tích
  • Bài 5. Phương trình chứa ẩn ở mẫu
  • Bài 6. Giải bài toán bằng cách lập phương trình
  • Bài 7. Giải bài toán bằng cách lập phương trình (tiếp)(Đang xem)
  • Bài đọc thêm
  • Ôn tập chương III
  • Chương IV. BẤT PHƯƠNG TRÌNH BẬC NHẤT MỘT ẨN
  • Bài 1. Liên hệ giữa thứ tự và phép cộng
  • Bài 2. Liên hệ giữa thứ tự và phép nhân
  • Bài 3. Bất phương trình một ẩn
  • Bài 4. Bất phương trình bậc nhất một ẩn
  • Bài 5. Phương trình chứa dấu giá trị tuyệt đối
  • Ôn tập chương IV
  • PHẦN HÌNH HỌC
  • Chương III. TAM GIÁC ĐỒNG DẠNG
  • Bài 1. Định lí Ta - lét trong tam giác
  • Bài 2. Định lí đảo và hệ quả của định lí Ta - lét
  • Bài 3. Tính chất đường phân giác của tam giác
  • Bài 4. Khái niệm hai tam giác đồng dạng
  • Bài 5. Trường hợp đồng dạng thứ nhất
  • Bài 6. Trường hợp đồng dạng thứ hai
  • Bài 7. Trường hợp đồng dạng thứ ba
  • Bài 8. Các trường hợp đồng dạng của tam giác vuông
  • Bài 9. Ứng dụng thực tế của tam giác đồng dạng
  • Ôn tập chương III
  • Chương IV. HÌNH LĂNG TRỤ ĐỨNG - HÌNH CHÓP ĐỀU
  • A - Hình lăng trụ đứng
  • Bài 1. Hình hộp chữ nhật
  • Bài 2. Hình hộp chữ nhật (tiếp)
  • Bài 3. Thể tích của hình hộp chữ nhật
  • Bài 4. Hình lăng trụ đứng
  • Bài 5. Diện tích xung quanh của hình lăng trụ đứng
  • Bài 6. Thể tích của hình lăng trụ đứng
  • B - Hình chóp đều
  • Bài 7. Hình chóp đều và hình chóp cụt đều
  • Bài 8. Diện tích xung quanh của hình chóp đều
  • Bài 9. Thể tích của hình chóp đều
  • Ôn tập chương IV
  • Bài tập ôn cuối năm

Từ khóa » Toán 8 Bài 7 Giải Toán Bằng Cách Lập Phương Trình