Sin^2A+Sin^2B+Sin^2C = 2+2CosACosBCosC When A+B+C=180

Abdur1234567890 Abdur1234567890
  • 03.04.2019
  • Math
  • Secondary School
answered Sin^2A+Sin^2B+Sin^2C = 2+2CosACosBCosC when A+B+C=180°​ See answers rahman786khalilu rahman786khalilu rahman786khalilu

Given A+B+C = 180

C = 180 -( A+B)

cos C = cos 180 - (A +B) = - cos (A+B)

now, Sin^2A + 1 - Cos^2B + Sin^2C

1 -(Cos^2B - Sin^2A) + Sin ^2C

1 - Cos (A+B) Cos (A - B) + 1- Cos^2C

2 + CosC [Cos(A -B) + Cos ( A + B)]

2 + 2 Cos A CosB CosC

Hence L.H.S = R.H.S

may this will help us mark as brainliest

pradeeppadhy pradeeppadhy

Answer:

sin^2A+sin^2B+sin^2C-2cosAxosBcosC

= 1-cos^2A+1-cos^2B+1-cos^2C-2cosAcosBcosC

= 3-cos^2A-cos^2B-cos^2C-2cosAcosBcosc

=1/2(6-2cos^2A-2cos^2B-2cos^2C-4cosAcosB

cos C

=then do it yourself I am going to sleeping

New questions in Math

create quadratic polynomial the sum and product of whose minus root 3 and root 3​ 8. If p-5-2√6 then find the value of (1-p)²/ p²​ 576 forcks are packed in boxes. ifone box has 24 book how many boc are needed?​ 4. Divide the following. a) 19 kL 968 L by 3.2 b) 67 m and 32 cm by 5.1 c) 3 kg 68 g by 1.3​ in the given figure prove that angle p + angle q + angle r + angle s + angle t = 2 right angles​ Previous Next

Từ khóa » Chứng Minh Sin^2a+sin^2b+sin^2c=2(1+cosacosbcosc)