[Sinh Lí Guyton Số 41] Sự Vận Chuyển O2 Và CO2 Trong Máu Và Mô Kẽ
Có thể bạn quan tâm
Sau khi Oxy được khuếch tán từ phế nang vào máu phổi, sẽ được vận chuyển gần như hoàn toàn tới các mao mạch ở mô dưới dạng gắn với hemoglobin. Sự xuất hiện của Hb trong hồng cầu cho phép máu vận chuyển một lượng O2nhiều hơn 30 đến 100 lần sự vận chuyển O2 hòa tan trong máu.
Trong các tế bào ở mô của cơ thể, O2 phản ứng với rất nhiều chất để tạo ra CO2. Lượng CO2này vào các mao mạch ở mô và được vận chuyển ngược trở lại phổi. CO2, như O2, kết hợp với các chất hóa học trong máu làm tăng sự vận chuyển CO2 lên 15-20 lần.
Chương này trình bày cả những nguyên lí vật lí và hóa học về chất lượng và số lượng O2 và CO2 vận chuyển trong máu và mô kẽ.
1. VẬN CHUYỂN OXY TỪ PHỔI ĐẾN MÔ
Trong chương 40, chúng ta đã chỉ ra rằng các loại khí có thể di chuyển từ nơi này đến nơi khác bằng cách khuếch tán và nguyên nhân của sự vận chuyển này là sự chênh lệch về phân áp từ vị trí đầu tiên cho tới vị trí tiếp theo. Như vậy, O2 khuếch tán từ phế nang vào máu mao mạch phổi vì phân áp O2 (PO2) trong các phế nang lớn hơn PO2 trong máu mao mạch phổi. Trong các mô khác của cơ thể, PO2 trong máu mao mạch cao hơn so với các mô gây ra sự khuếch tán O2 vào các tế bào.
Ngược lại, khi O2 được chuyển hóa ở các tế bào để tạo thành CO2, phân áp CO2 ở nội bào tăng lên, gây ra sự khuếch tán CO2 vào các mao mạch mô. Sau khi máu vào phổi, CO2 khuếch tán ra khỏi máu vào các phế nang vì PCO2 trong máu mao mạch phổi lớn hơn trong các phế nang.
Như vậy, việc vận chuyển O2 và CO2 của máu phụ thuộc vào cả việc khuếch tán chúng và lưu lượng của dòng máu. Bây giờ chúng ta xem xét về các yếu tố chịu trách nhiệm cho những sự tác động này.
2. SỰ KHUẾCH TÁN OXY TỪ PHẾ NANG VÀO MÁU Ở MAO MẠCH PHỔI
Phần trên của Hình 41-1, cho thấy một phế nang liền kề với mao mạch phổi, đã minh họa sự khuếch tán O2 giữa không khí ở phế nang và máu ở phổi. PO2 trung bình của O2 dạng khí ở phế nang là 104 mm Hg, trong khi p02 máu tĩnh mạch đổ vào mao mạch phổi tại phần cuối động mạch của nó ở mức trung bình chỉ 40 mmHg, bởi một lượng lớn O2 đã rời khỏi máu khi nó đi qua các mô ở ngoại vi. Vì vậy sự chênh lệch phân áp oxy ban đầu mà gây ra sự khuếch tán O2 vào mao mạch phổi là 104 – 40, hay là 64 mmHg.
Trong đồ thị ở phần dưới của hình vẽ trên, đường cong cho thấy sự gia tăng nhanh chóng PO2 máu khi máu đi qua các mao mạch phổi, PO2 máu tăng gần bằng po2 của không khí trong lòng phế nang ngay trước đó PO2 máu đã tăng một khoảng gấp 3 lần ở các mao mạch, trở thành gần 104 mm Hg.
Hấp thu oxy vào máu tại phổi trong lúc lao động. Trong thời gian lao động nặng, cơ thể của một người có thể yêu cầu nhiều hơn 20 lần lượng oxy bình thường. Ngoài ra, do tăng cung lượng tim khi lao động, thời gian mà máu vẫn còn trong mao mạch phổi có thể được giảm xuống thấp hơn một nửa bình thường. Tuy nhiên, nhờ hệ số an toàn rất cao cho sự khuếch tán của O2 qua màng hô hấp, máu vẫn trở nên gần như bão hòa với O2 trước khi rời khỏi mao mạch phổi. Điều này có thể được giải thích như sau:
Thứ nhất, chương 40 đã được chỉ ra trong rằng dung tích O2 hòa tan tăng gần gấp ba lần khi lao động; Kết quả này chủ yếu là do tăng diện tích bề mặt của các mao mạch tham gia vào sự khuếch tán và cũng từ một tỷ lệ thông khí-tưới máu nhiều hơn gần như lý tưởng ở phần trên của phổi.
Thứ hai, lưu ý trong các đường cong của Hình 41-1 rằng trong điều kiện không lao động, máu trở nên gần như bão hòa với O2 trước khi nó đi qua một phần ba các mao mạch phổi, và hầu như không có O2 khuếch tán thêm vào máu trong hai phần ba cuối của quá trình vận chuyển. Điều đó có nghĩa là, máu thường nằm trong các mao mạch phổi lâu hơn khoảng ba lần thời gian cần thiết để cung cấp đủ O2 cho cơ thể. Do đó, khi lao động, thậm chí với một thời gian ngắn tiếp xúc trong các mao mạch, máu vẫn có thể gần như đủ lượng oxy.
3. VẬN CHUYỂN O2 TRONG MÁU ĐỘNG MẠCH
Khoảng 98 phần trăm lượng máu đi vào trong tâm nhĩ trái từ phổi chỉ vừa đi qua các mao mạch phế nang đã được oxy hóa, PO2 lên đến khoảng 104 mm Hg. 2 phần trăm còn lại của máu đã chảy qua động mạch chủ đi vào tuần hoàn phổi là nguồn cung cấp máu chính cho các mô sâu trong phổi và không được tiếp xúc với không khí ở phổi. Lưu lượng máu này được gọi là “dòng shunt “, có nghĩa là máu được đi tắt qua các vùng trao đổi khí. Sau khi ra khỏi phổi, PO2 của máu tại các shunt là xấp xỉ bằng giá trị bình thường ở hệ thống tĩnh mạch, khoảng 40 mm Hg. Khi máu trong các tĩnh mạch phổi này gặp máu giàu oxy từ các mao mạch phế nang, đây được gọi là sự hòa lẫn máu tĩnh mạch đã làm cho PO2 của máu vào tim trái và bơm vào động mạch chủ giảm xuống khoảng 95 mmHg. Những thay đổi này của PO2 trong máu tại các điểm khác nhau trong hệ thống tuần hoàn được thể hiện trong Hình 41-2.
4. SỰ KHUẾCH TÁN CỦA OXY TỪ MAO MẠCH NGOẠI VI VÀO KHOẢNG KẼ
Khi các mạch máu đến các mô ngoại vi, PO2 trong các mao mạch vẫn là 95 mm Hg.Tuy nhiên như thể hiện trong Hình 41-3, PO2 trong dịch kẽ xung quanh các tế bào ở mô trung bình chỉ 40 mm Hg. Như vậy, có một sự chênh lệch phân áp ban đầu lớn gây ra sự khuếch tán O2 từ máu mao mạch vào các mô một cách rất nhanh chóng, PO2 trong các mao mạch giảm nhanh xuống gần bằng với 40 mm Hg –phân áp trong mô kẽ. Do đó, PO2 của máu khi rời khỏi các mao mạch ở mô và nhập vào các tĩnh mạch toàn thân cũng là khoảng 40 mm Hg.
Tăng lưu lượng dòng máu sẽ tăng PO2 ở dịch kẽ.
Nếu lưu lượng máu qua một mô cụ thể được tăng lên, càng tăng số lượng O2 được vận chuyển vào các mô thì PO2 ở đó càng tăng cao tương ứng hơn. Hiệu ứng này được thể hiện trong Hình 41-4. Lưu ý rằng sự gia tăng lưu lượng máu đến 400 phần trăm thường tăng PO2 từ 40 mmHg (tại điểm A trong hình) đến 66 mm Hg (điểm B). Tuy nhiên, giới hạn trên mà PO2 có thể tăng lên, thậm chí với lưu lượng máu tối đa, là 95 mm Hg, vì đây là phân áp O2 trong máu động mạch. Ngược lại, nếu lưu lượng máu qua mô giảm, PO2 ở mô cũng giảm đi, như thể hiện ở điểm C.
Tăng chuyển hóa ở mô sẽ làm giảm PO2 ở dịch kẽ
Nếu các tế bào sử dụng nhiều O2 cho sự trao đổi chất hơn so với bình thường, PO2 ở dịch kẽ sẽ giảm. Hình 41-4 cũng cho thấy hiệu ứng này, cho thấy giảm PO2 ở dịch kẽ khi mức tiêu thụ O2 của tế bào được tăng lên và tăng PO2 khi mức tiêu thụ giảm.
Tóm lại, PO2 tại mô được cân bằng bởi 2 yếu tố sau: (1) tốc độ máu vận chuyển O2 đến các mô và (2) tốc độ mô tiêu thụ O2.
5. SỰ KHUẾCH TÁN OXY TỪ CÁC MAO MẠCH NGOẠI VI VÀO CÁC TẾ BÀO Ở MÔ
Các tế bào luôn sử dụng oxy. Do đó, ở ngoại vi, PO2 nội bào tại mô vẫn còn thấp hơn so với PO2 trong mao mạch. Ngoài ra, trong nhiều trường hợp, có một khoảng cách sinh học đáng kể giữa các mao mạch và tế bào. Do đó, bình thường PO2 nội bào dao động từ 5- 40 mm Hg, trung bình 23 mm Hg (đo trực tiếp ở động vật thí nghiệm). Vì chỉ có 1-3 mm Hg của phân áp O2 thường được dùng để tham gia tất cả các quá trình chuyển hóa sử dụng oxy trong tế bào, nên ngay cả PO2 nội bào ở mức thấp -23 mm Hg vẫn là đủ và an toàn cho cơ thể.
6. SỰ KHUẾCH TÁN CO2 TỪ TẾ BÀO VÀO MAO MẠCH Ở MÔ NGOẠI VI VÀ TỪ MAO MẠCH PHỔI VÀO PHẾ NANG
Khi các tế bào sử dụng O2, hầu hết sẽ tạo ra PO2, và sự biến đổi này làm tăng PCO2 nội bào; vì PCO2 nội bào tăng cao nên CO2 khuếch tán từ tế bào vào các mao mạch và sau đó được vận chuyển trong máu đến phổi. Tại phổi, CO2 khuếch tán từ mao mạch phổi vào phế nang và được thải ra ngoài.
Như vậy, tại mỗi vị trí trong chuỗi vận chuyển khí, CO2 khuếch tán theo hướng ngược lại hoàn toàn với sự khuếch tán của O2. Tuy nhiên, có một sự khác biệt lớn giữa sự khuếch tán của CO2 và O2: CO2 có thể khuyếch tán nhanh hơn O2 khoảng 20 lần. Vì vậy, trong mỗi trường hợp, chênh áp cần thiết để gây ra sự khuếch tán CO2 là ít hơn so với chênh áp cần thiết để gây ra sự khuếch tán O2.
Sau đây là phân áp CO2 ở các vị trí khác nhau:
- PCO2 nội bào: 46 mm Hg; PCO2 ở mô kẽ: 45 mm Hg. Như vậy, chênh áp chỉ là 1 mm Hg, thể hiện trong Hình 41-5.
- PCO2 của máu động mạch khi vào các mô: 40 mm Hg; PCO2 máu tĩnh mạch khi ra khỏi mô: 45 mm Hg.
Thể hiện trong Hình 41-5, máu mao mạch ở mô gần như đạt đến trạng thái cân bằng với PCO2 ở khoảng kẽ là 45 mm Hg.
- PCO2 ở vị trí cuối của mao động mạch là 45 mm Hg đi vào các mao mạch phổi; PCO2 của không khí trong lòng phế nang là 40 mm Hg. Như vậy, chỉ có chênh áp 5 mm Hg cần cho sự khuếch tán CO2 ra khỏi các mao mạch phổi vào phế nang. Hơn nữa, như Hình 41-6, PCO2 của máu mao mạch phổi giảm xuống 40 mm Hg -gần như bằng PCO2 ở các phế nang sau khi nó đã trải qua hơn một phần ba quãng đường qua các mao mạch. Hiệu ứng tương tự như đã được quan sát ở sự khuếch tán O2 trước đó, ngoại trừ việc khuếch tán O2 theo hướng ngược lại.
Ảnh hưởng của lưu lượng máu và chuyển hóa tại mô tới PCO2 ở khoảng kẽ.
Lưu lượng máu mao mạch và chuyển hóa tại mô tác động tới PCO2 theo cách ngược lại với ảnh hưởng tới PO2 ở mô. Hình 41-7 cho thấy những ảnh hưởng sau:
- Sự giảm lưu lượng máu từ bình thường (điểm A) đến một phần tư bình thường (điểm B) sẽ tăng PCO2 ở mô ngoại vi so với giá trị bình thường là 45 mm Hg đến một mức cao là 60 mm Hg. Ngược lại, tại các mao mạch ở mô, tăng lưu lượng máu đến sáu lần bình thường (điểm C) sẽ giảm PCO2 khoảng kẽ từ giá trị bình thường của 45 mm Hg xuống 41 mm Hg, xuống đến một mức độ gần như bằng với PCO2 trong máu động mạch (40 mm Hg).
- Chuyển hóa ở mô tăng gấp 10 lần sẽ làm tăng đáng kể PCO2 ở dịch kẽ ở mọi mức lưu lượng máu, trong khi giảm quá trình chuyển hóa một phần tư mức bình thường làm cho PCO2 dịch kẽ tụt xuống khoảng 41 mm Hg, gần đạt tới giá trị của nó ở máu động mạch là 40 mm Hg.
VAI TRÒ CỦA HB TRONG VẬN CHUYỂN OXY
Bình thường, khoảng 97 % lượng oxy được vận chuyển từ phổi đến các mô được gắn với hemoglobin trong hồng cầu. Còn lại 3 % được vận chuyển dưới dạng hoà tan trong huyết tương và các tế bào máu. Do đó, dưới điều kiện bình thường, gần như toàn bộ oxy được vận chuyển đến các mô bởi hemoglobin.
7. SỰ KẾT HỢP THUẬN NGHỊCH CỦA OXY VÀ HEMOGLOBIN
Bản chất hóa học của hemoglobin đã được trình bày trong Chương 33, chúng ta đã chỉ ra rằng các phân tử O2 gắn lỏng lẻo và thuận nghịch với phần heme của hemoglobin. Khi PO2 cao, như trong các mao mạch phổi, O2 gắn với hemoglobin, nhưng khi PO2 thấp, như trong các mao mạch ở mô, O2 được giải phóng từ hemoglobin. Đây là cơ sở cho hầu hết sự vận chuyển O2 từ phổi đến các mô.
Đồ thị phân ly Oxy- Hemoglobin.
Hình 41-8 thể hiện đồ thị phân ly Oxy-hemoglobin, trong đó chứng tỏ một sự tăng dần tỷ lệ hemoglobin gắn với O2 khi PO2 máu tăng, tỷ lệ đó được gọi là độ bão hòa hemoglobin. Vì máu rời phổi và vào các động mạch hệ thống thường có một PO2 khoảng 95 mm Hg, có thể nhìn thấy từ đồ thị rằng: ở điều kiện bình thường, O2 bão hòa ở động mạch hệ thống trung bình chiếm 97%. Ngược lại, trong máu tĩnh mạch PO2 lấy về từ các mô ngoại vi bình thường là khoảng 40 mm Hg, và độ bão hòa của hemoglobin trung bình là 75%.
Lượng oxy tối đa có thể kết hợp với Hemoglobin trong máu.
Máu của một người bình thường chứa khoảng 15 gam hemoglobin trong mỗi 100 ml máu, và mỗi gam hemoglobin có thể mang tối đa là 1,34 ml O2 (1,39 ml khi hemoglobin ở dạng hóa học thuần túy, những tạp chất như: methemoglobin sẽ giảm sự vận chuyển O2). Vì vậy: 15 nhân với 1,34 bằng 20,1 Điều đó có nghĩa là: trung bình 15 gam hemoglobin trong 100 ml máu có thể mang tổng cộng khoảng 20 ml O2 nếu độ bão hòa của hemoglobin là 100%. Điều này thường được thể hiện là 20 % thể tích. Đồ thị phân ly oxy-hemoglobin cho người bình thường cũng có thể được thể hiện qua mức phần trăm thể tích của O2, như thể hiện ở thang đo bên phải Hình 41-8, thay vì phần trăm bão hòa của hemoglobin.
Lượng oxy phân li từ Hemoglobin khi máu động mạch hệ thống đi qua các mô.
Bình thường, tổng lượng O2 gắn với hemoglobin trong máu động mạch hệ thống ( với độ bão hòa 97 %) là khoảng 19,4 ml mỗi 100 ml máu, như thể hiện trong Hình 41-9. Sau khi đi qua các mao mạch ở mô, trung bình lượng O2 này bị giảm xuống còn 14,4 ml (PO2 PO2 40 mm Hg, 75 % hemoglobin bão hòa). Do đó, ở điều kiện bình thường, khoảng 5 ml O2 được vận chuyển từ phổi đến các mô bởi mỗi 100 mililít máu chảy qua.
Sự vận chuyển của oxy tăng một cách rõ rệt khi lao động nặng.
Khi lao động nặng, các tế bào cơ sử dụng O2 với một tốc độ nhanh chóng, do đó: trong hoàn cảnh khắc nghiệt, có thể gây ra PO2 ở dịch kẽ giảm xuống từ bình thường là 40 mm Hg tới mức thấp là 15 mm Hg. Ở phân áp O2 thấp như vậy, chỉ có 4,4 ml O2 gắn với hemoglobin trong mỗi 100 ml máu, như thể hiện trong Hình 41-9. Do đó: 19,4 – 4,4; hoặc 15 ml, là lượng O2 thực cung cấp cho mô của mỗi 100 mililít máu lưu thông, đó là lượng O2 nhiều hơn gấp ba lần so với lượng O2 bình thường trong mỗi thể tích máu vận chuyển qua các mô. Hãy nhớ rằng cung lượng tim có thể tăng 6-7 lần bình thường ở vận động viên marathon được đào tạo tốt. Do đó, phép tính nhân của sự gia tăng cung lượng tim (gấp 6 – 7 lần) với sự gia tăng trong O2 vận chuyển trong mỗi thể tích máu (gấp 3 lần) cho ta một sự gia tăng gấp 20 lần sự vận chuyển O2 đến các mô. Chúng ta thấy phần sau chương này còn một số yếu tố khác tạo điều kiện thuận lợi cho sự vận chuyển O2 vào cơ khi lao động, vì vậy PO2 trong mô cơ thường chỉ giảm hơi thấp hơn bình thường ngay cả khi gắng sức.
Hệ số sử dụng
Tỷ lệ phần trăm của máu cung cấp O2 của nó khi đi qua các mao mạch ở mô được gọi là hệ số sử dụng. Giá trị bình thường của hệ số này là khoảng 25 %. Rõ ràng từ những thảo luận trước, đó là 25 % của hemoglobin đã được gắn với oxy giải phóng O2 của nó cho các mô. Trong thời gian gắng sức, hệ số sử dụng trong toàn bộ cơ thể có thể tăng lên tới 75 – 85 %. Tại các vùng có lưu lượng máu chảy rất chậm hoặc tỷ lệ trao đổi chất rất cao, hệ số sử dụng gần 100 % đã được ghi nhận, tất cả lượng O2 cần thiết đã được đưa đến các mô.
8. HEMOGLOBIN “HỆ ĐỆM” CHO PO2 Ở MÔ
Mặc dù hemoglobin cần thiết cho việc vận chuyển O2 đến các mô, nhưng nó còn thực hiện một chức năng thiết yếu cho sự sống- chức năng như một hệ thống “mô đệm oxy”. Đó là: các hemoglobin trong máu chịu trách nhiệm chủ yếu cho việc ổn định PO2 trong các mô. Điều này có thể được giải thích như sau.
Hemoglobin giúp duy trì PO2 gần như ổn định trong các mô.
Dưới chuyển hóa cơ bản, các mô cần khoảng 5 ml O2 từ mỗi 100 mililít máu đi qua các mao mạch ở mô. Đề cập đến đồ thị phân ly O2-hemoglobin trong Hình 41-9, có thể thấy rằng bình thường để có 5 ml O2 sẽ được giải phóng cho mỗi 100 ml máu chảy qua mô , PO2 phải giảm xuống tới khoảng 40 mm Hg. Vì vậy, PO2 ở mô bình thường không thể vượt lên trên mức 40 mm Hg này. Vì nếu như vậy, lượng O2 cần thiết bởi các mô sẽ không được giải phóng từ hemoglobin. Bằng cách này, các hemoglobin thường tạo ra một giới hạn trên cho PO2 trong các mô ở khoảng 40 mmHg.
Ngược lại, khi gắng sức, lượng O2 cần thêm nhiều hơn 20 lần bình thường phải được cung cấp từ hemoglobin cho các mô. Tuy nhiên, điều này vẫn có thể đạt được mà PO2 gần như không giảm nhiều trong mô vì: (1) sườn dốc của đồ thị phân ly và (2) sự gia tăng lưu lượng máu qua mô do PO2 giảm dẫn đến một sự giảm sút rất nhỏ PO2, tạo ra một lượng lớn O2 được giải phóng thêm từ hemoglobin vào máu. Như vậy, các hemoglobin trong máu sẽ tự động cung cấp O2 cho các mô ở phân áp O2 trong một khoảng khá hẹp từ 15-40 mm Hg.
Khi nồng độ oxy khí quyển thay đổi một cách rõ rệt, hệ đệm Hb vẫn duy trì PO2 gần như ổn định trong máu.
Bình thường, PO2 trong các phế nang khoảng 104 mm Hg, nhưng khi leo lên một ngọn núi hoặc lên một chiếc máy bay, PO2 có thể dễ dàng giảm xuống còn dưới một nửa. Ngoài ra, khi một người đi vào khu vực khí nén, chẳng hạn như lặn sâu dưới biển hoặc ở trong phòng áp lực, PO2 có thểtăng lên đến 10 lần mức này. Mặc dù vậy, ở các mô, PO2 hầu như không thay đổi.
Có thể nhìn thấy từ đồ thị phân ly oxy- hemoglobin trong Hình 41-8: khi PO2 trong phế nang bị giảm xuống mức thấp là 60 mm Hg, độ bão hòa hemoglobin động mạch vẫn là 89 %-chỉ giảm 8 % dưới mức bão hòa bình thường là 97 %. Hơn nữa, các mô còn phải không dùng đến khoảng 5 ml O2 từ mỗi 100 mililít máu đi qua các mô; để loại bỏ O2 này, PO2 của máu tĩnh mạch giảm xuống 35 mm Hg – thấp hơn 5 mm Hg so với giá trị bình thường là 40 mm Hg. Như vậy, PO2 ở mô hầu như không thay đổi, bất chấp sự sụt giảm đáng kể PO2 trong phế nang từ 104 xuống còn 60 mm Hg.
Ngược lại, khi PO2 phế nang tăng cao tới 500 mm Hg, độ bão hòa oxy tối đa của hemoglobin không bao giờ có thể vượt lên trên 100 %- chỉ 3% trên mức bình thường của 97 %. Chỉ một lượng nhỏ O2 hòa tan thêm vào trong máu, điều này sẽ được thảo luận sau. Sau đó, khi máu đi qua các mao mạch ở mô và mất một lượng lớn O2 cho các mô, sẽ làm giảm PO2 của máu mao mạch xuống một giá trị chỉ lớn hơn vài ml so với bình thường là 40 mm Hg. Do đó tại phế nang, dù O2 có thể thay đổi đáng kể, từ 60 đến hơn 500 mm Hg, nhưng PO2 trong các mô ngoại vi không thay đổi nhiều hơn vài mmHg so với bình thường, điều này đã chứng minh rõ vai trò “đệm oxy” ở mô của hệ thống hemoglobin trong máu.
CÁC YẾU TỐ THAY ĐỔI ĐỒ THỊ PHÂN LY OXY- HEMOGLOBIN
VAI TRÒ QUAN TRỌNG CỦA CHÚNG TỚI SỰ VẬN CHUYỂN OXY.
Đồ thị phân ly oxy- hemoglobin ở Hình 41-8 và 41-9 ở điều kiện cơ thể và máu bình thường. Tuy nhiên, một số yếu tố có thể chuyển dịch đồ thị phân ly theo một hướng khác được thể hiện trong Hình 41-10. Hình này cho thấy rằng khi máu trở nên hơi có tính axit, pH giảm hơn giá trị bình thường từ 7,4 xuống tới 7,2; đồ thị phân ly Oxy- hemoglobin chuyển sang phải trung bình khoảng 15 %. Ngược lại, sự gia tăng pH từ bình thường 7,4 lên tới 7,6 đường cong cũng chuyển sang trái một lượng tương tự.Ngoài sự thay đổi pH, còn một số yếu tố khác được biết có thể chuyển dịch đồ thị. Ba trong số này, tất cả đều chuyển hướng đồ thị sang phải, là (1) nồng độ CO2 tăng, (2) nhiệt độ trong máu tăng lên, và (3) tăng 2,3-biphosphoglycerate (BPG)- một hợp chất phosphate quan trọng cho chuyển hóa, xuất hiện trong máu ở nồng độ khác nhau trong các điều kiện chuyển hóa khác nhau.
9. TĂNG VẬN CHUYỂN OXY TỚI MÔ KHI CO2 VÀ ION TĂNG LÀM THAY ĐỔI ĐỒ THỊ PHÂN LY OXY-HEMOGLOBIN – HIỆU ỨNG BOHR
Sự chuyển dịch sang phải của đồ thị phân ly Oxy hemoglobin đáp ứng với sự gia tăng CO2 máu và các ion H+ có một tác động đáng kể làm tăng cường việc giải phóng O2 từ máu vào các mô và tăng cường gắn oxy vào hemoglobin ở phổi. Đây được gọi là hiệu ứng Bohr, có thể giải thích như sau: Khi máu đi qua các mô, CO2 khuếch tán từ tế bào ở mô vào máu, sự khuếch tán này làm tăng PCO2 máu, do đó làm tăng H2CO3 máu (axit cacbonic) và nồng độ ion H+. Hiệu ứng này sẽ làm chuyển dịch đồ thị phân ly oxy- hemoglobin sang bên phải và đi xuống, như thể hiện trong Hình 41-10, buộc O2 phải ra khỏi hemoglobin và do đó tăng lượng O2 vận chuyển tới các mô.
Những hiệu ứng ngược lại hoàn toàn xảy ra trong phổi, nơi CO2 khuếch tán từ máu vào phế nang. Sự khuếch tán này làm giảm PCO2 trong máu và làm giảm nồng độ ion H+ sẽ làm chuyển hướng đồ thị phân ly oxy- hemoglobin sang bên trái và đi lên. Do đó, số lượng O2 gắn với hemoglobin ở bất kỳ phân áp oxy nào ở phế nang cũng tăng lên một cách đáng kể, vì vậy cho phép một lượng lớn O2 vận chuyển tới các mô.
ẢNH HƯỞNG CỦA BPG ĐẾN SỰ THAY ĐỔI ĐỒ THỊ PHÂN LY OXY-HEMOGLOBIN
Bình thường, BPG trong máu làm đường cong phân ly O2-hemoglobin dịch chuyển nhẹ sang phải ở mọi thời điểm. Trong điều kiện thiếu oxy kéo dài hơn một vài giờ, lượng BPG trong máu tăng lên đáng kể, do đó chuyển dịch đồ thị phân ly sang phải một cách đáng kể hơn bình thường. Sự thay đổi này dẫn đến O2 sẽ được giải phóng đến các mô nhiều hơn 10mmHg, phân áp oxy ở mô khi đó sẽ cao hơn các trường hợp không có tăng BPG. Do đó, dưới một số trạng thái nhất định, cơ chế BPG có thể quan trọng đối với sự thích nghi với tình trạng thiếu oxy, đặc biệt là tình trạng thiếu oxy khi lưu lượng máu qua mô thấp.
ĐỒ THỊ PHÂN LY OXY-HEMOGLOBIN CHUYẾN DỊCH SANG BÊN PHẢI KHI LAO ĐỘNG NẶNG
Trong khi lao động, một số yếu tố chuyển dịch đồ thị phân ly sang phải một cách đáng kể. Do đó cung cấp thêm O2 cho hoạt động, co cơ. Các cơ co sẽ giải phóng một lượng lớn khí CO2; lượng CO2 này và một số axit khác bị giải phóng do cơ co sẽ làm tăng nồng độ ion H+ trong máu ở mao mạch của cơ. Ngoài ra, nhiệt độ của cơ thường tăng 2°C – 3°C có thể tăng lượng O2 được vận chuyển tới cơ nhiều hơn nữa. Tất cả những yếu tố trên cùng nhau tạo ra sự chuyển dịch của đồ thị phân li oxyhemoglobin sang phải một cách đáng kể. Sự chuyển dịch sang phải này của đồ thị giúp cho O2 được giải phóng từ hemoglobin vào trong cơ ở một mức cao là 40mmHg, thậm chí có khi 70 % của O2 đã được giải phóng khỏi hemoglobin. Sau đó, ở trong phổi, sự thay đổi xảy ra theo hướng ngược lại, cho phép lấy thêm nhiều O2 từ các phế nang.
10. CHUYỂN HÓA SỬ DỤNG OXY CỦA TẾ BÀO
Ảnh hưởng của PO2 nội bào lên tốc độ sử dụng oxy.
Chỉ cần một lượng nhỏ oxy cho các phản ứng hóa học trong tế bào diễn ra bình thường. Lý do cho hiện tượng này là nhờ hệ thống các enzym hô hấp của tế bào, các enzyme này sẽ được thảo luận trong Chương 68, chúng được dùng để khi PO2 trong tế bào lớn hơn 1 mm Hg, lượng O2 sẵn có không còn là một yếu tố ức chế tốc độ của các phản ứng hóa học, thay vào đó, yếu tố ức chế chính là nồng độ adenosine diphosphate (ADP) nội bào. Hiệu ứng này được thể hiện trong Hình 41-11, cho thấy mối quan hệ giữa PO2 nội bào và tốc độ sử dụng O2 ở các nồng độ ADP khác nhau. Có thể thấy bất cứ khi nào PO2 nội bào trên 1 mm Hg, tốc độ sử dụng O2 không thay đổi với bất kỳ nồng độ nào của ADP nội bào. Ngược lại, khi nồng độ ADP bị thay đổi, tốc độ sử dụng O2 thay đổi tương ứng với sự thay đổi nồng độ ADP.
Như đã giải thích ở Chương 3, khi adenosine triphos-phate (ATP) được sử dụng trong các tế bào để cung cấp năng lượng, nó được chuyển đổi thành ADP. Càng tăng nồng độ của ADP làm tăng chuyển hóa và sử dụng O2 (vì nó kết hợp với các chất dinh dưỡng tế bào khác nhau) thì càng tăng giải phóng năng lượng nhờ chuyển đổi ADP thành ATP. Trong điều kiện hoạt động bình thường, yếu tố cuối cùng ảnh hưởng đến tốc độ sử dụng O2 là tốc độ tiêu tốn năng lượng trong các tế bào, đó cũng chính là tốc độ mà ADP được tạo thành từ ATP.
Ảnh hưởng của khoảng cách khuếch tán từ mao mạch tới tế bào trong việc sử dụng oxy
Các tế bào ở mô hiếm khi có khoảng cách xa hơn 50 micromet tới một mao mạch, và bình thường O2 có thể khuyếch tán dễ dàng từ các mao mạch tới các tế bào đủ cho chuyển hóa. Tuy nhiên, thỉnh thoảng, các tế bào nằm xa các mao mạch hơn bình thường, và tỷ lệ O2 khuếch tán đến các tế bào này có thể trở nên quá thấp đến nỗi mà PO2 nội bào giảm xuống dưới mức cần thiết để duy trì sự trao đổi chất trong tế bào. Do đó, trong trạng thái này, ở những tế bào bị khuếch tán giới hạn thì mức sử dụng oxy không còn được xác định bởi số lượng của ADP nội bào nữa. Tuy nhiên, trường hợp này hầu như không bao giờ xảy ra, ngoại trừ ở các tình trạng bệnh lý.
Ảnh hưởng của lưu lượng máu lên sử dụng oxy cho chuyển hóa.
Tổng lượng O2 có sẵn trong mỗi phút để sử dụng trong mô bất kỳ được xác định bởi (1)lượng O2 có thể được vận chuyển đến các mô trong mỗi 100 mililít máu và (2) tốc độ của dòng máu. Nếu tốc độ chảy của máu giảm xuống bằng không, số lượng O2 có thể sử dụng cũng giảm xuống bằng không. Như vậy, có trường hợp tốc độ máu chảy qua một mô có thể rất thấp đến nỗi mà PO2 ở mô giảm xuống dưới 1 mm Hg- mức cần thiết cho chuyển hóa của tế bào. Dưới những tình trạng này, tốc độ sử dụng O2 của mô là lưu lượng máu giới hạn. Cả tình trạng hạn chế khuếch tán và cả tình trạng hạn chế lưu lượng máu đều không thể kéo dài bởi tế bào sẽ nhận ít O2 hơn mức cần để duy trì sự sống cho tế bào. Tuy nhiên, nếu một người hít O2 ở mức PO2 tại phế nang rất cao, lượng O2 vận chuyển trong trạng thái hoà tan có thể lớn hơn nhiều, vì vậy tình trạng O2 vượt quá mức giới hạn bình thường đôi khi xuất hiện trong các mô, và “ngộ độc O2” xảy ra sau đó
Ảnh hưởng của lưu lượng máu lên sử dụng oxy cho chuyển hóa.
Tổng lượng O2 có sẵn trong mỗi phút để sử dụng trong mô bất kỳ được xác định bởi (1)lượng O2 có thể được vận chuyển đến các mô trong mỗi 100 mililít máu và (2) tốc độ của dòng máu. Nếu tốc độ chảy của máu giảm xuống bằng không, số lượng O2 có thể sử dụng cũng giảm xuống bằng không. Như vậy, có trường hợp tốc độ máu chảy qua một mô có thể rất thấp đến nỗi mà PO2 ở mô giảm xuống dưới 1 mm Hg- mức cần thiết cho chuyển hóa của tế bào. Dưới những tình trạng này, tốc độ sử dụng O2 của mô là lưu lượng máu giới hạn. Cả tình trạng hạn chế khuếch tán và cả tình trạng hạn chế lưu lượng máu đều không thể kéo dài bởi tế bào sẽ nhận ít O2 hơn mức cần để duy trì sự sống cho tế bào.
Sự vận chuyển của O2 ở dạng hòa tan
Bình thường, PO2 động mạch là 95 mm Hg, khoảng 0,29 ml O2 được hòa tan trong 100 ml máu, và khi PO2 của máu giảm xuống 40 mm Hg – giá trị bình thường trong các mao mạch ở mô, chỉ duy trì 0,12 ml O2 hòa tan. Nói cách khác, mỗi 100 mililít máu động mạch lưu thông thường vận chuyển 0,17 ml oxy dưới dạng hoà tan vào mô. Con số này được so sánh với gần 5 ml O2 được vận chuyển bằng các hemoglobin trong hồng cầu. Vì vậy, lượng O2 được vận chuyển đến các mô trong trạng thái hoà tan thường ít, chỉ khoảng 3 % tổng số dạng vận chuyển, trong khi 97% vận chuyển bởi các hemoglobin.
Trong khi lao động nặng, hemoglobin giải phóng O2 đến các mô tăng gấp ba lần, lượng O2 tương ứng vận chuyển trong trạng thái hoà tan giảm xuống ít nhất 1,5 %. Tình trạng này thường dẫn đến rối loạn ý thức và thậm chí là tử vong, điều này sẽ được thảo luận trong Chương 45 liên quan với việc thở không khí có phân áp oxy cao ở một số thợ lặn dưới biển sâu.
Carbon Monoxide thế chỗ oxy gắn vào Hemoglobin
Carbon monoxide (CO) kết hợp với hemoglobin tại cùng một vị trí trên phân tử hemoglobin giống như O2; do đó nó có thể thay thế O2 để gắn với hemoglobin, qua đó làm giảm khả năng vận chuyển O2 của máu. Hơn nữa, nó liên kết chặt hơn O2 khoảng 250 lần, điều này được chứng minh bởi đồ thị phân ly CO hemoglobin trong Hình 41-12. Đồ thị này là gần như giống hệt với đồ thị phân ly Oxy-hemoglobin, ngoại trừ phân áp CO, hiển thị trên trục hoành, chỉ bằng 1/250 của phân áp oxy ở đồ thị phân ly oxy-hemoglobin ở Hình 41-8. Do đó, với phân áp của CO chỉ 0,4 mm Hg trong các phế nang- 1/250 phân áp O2 bình thường ở phế nang (100 mmHg PO2) đã cho phép CO cạnh tranh bình đẳng với O2 trong việc gắn với hemoglobin và dẫn đến một nửa hemoglobin trong máu bị gắn với CO thay vì phải gắn với O2. Do đó, một phân áp CO chỉ 0,6 mm Hg (nồng độ thể tích ít hơn một phần nghìn trong không khí) cũng có thể gây chết người.
AdvertisementMặc dù thể tích O2 trong máu sẽ giảm đáng kể khi ngộ độc CO, PO2 của máu có thể vẫn bình thường. Tình trạng này làm cho việc ngộ độc CO đặc biệt nguy hiểm vì máu có màu đỏ tươi và không có dấu hiệu rõ ràng của thiếu oxy máu, chẳng hạn như là xanh các ngón tay hoặc môi (chứng xanh tím). Ngoài ra, PO2 không giảm, và các cơ chế feedback thông thường nhằm kích thích tăng tần số hô hấp để đáp ứng với sự thiếu O2 (thường là phản ánh bởi PO2 thấp) không xảy ra. Vì não là một trong những cơ quan đầu tiên bị ảnh hưởng bởi tình trạng thiếu oxy, người bệnh có thể trở nên mất phương hướng và bất tỉnh trước khi nhận ra được sự nguy hiểm.
Một bệnh nhân bị ngộ độc CO nặng có thể được điều trị bằng cách dùng O2 nguyên chất vì phân áp O2 cao ở phế nang có thể thay thế nhanh chóng nhờ sự kết hợp của nó với hemoglobin. Cũng có thể có ích khi cho bệnh nhân khi cho ngửi CO2 5% vì kích thích mạnh mẽ trung tâm hô hấp, làm tăng thông khí ở phổi và dẫn tới làm giảm CO ở phế nang. Với O2 cao áp và liệu pháp CO2, CO có thể được gỡ bỏ khỏi máu nhanh hơn 10 lần so với khi không điều trị.
11. VẬN CHUYỂN CARBON DIOXIDE TRONG MÁU
Sự vận chuyển CO2 trong máu thường không phức tạp như vận chuyển O2 vì ngay cả trong những điều kiện bất thường nhất, CO2 vẫn luôn được vận chuyển với số lượng lớn hơn nhiều so với O2. Tuy nhiên, một lượng lớn CO2 đó có vai trò tạo nên sự cân bằng axit-bazơ của các chất dịch cơ thể, điều này đã được thảo luận trong Chương 31. Dưới điều kiện bình thường khi nghỉ ngơi, trong mỗi 100 ml máu trung bình có 4ml CO2 được vận chuyển từ mô tới phổi.
CÁC DẠNG VẬN CHUYỂN CO2
Để bắt đầu quá trình vận chuyển CO2, CO2 khuếch tán ra khỏi các tế bào ở mô dưới dạng phân tử CO2 hòa tan. Khi đi vào các mao mạch ở mô, ngay lập tức, CO2 đã khởi động một lượng lớn phản ứng hóa học và vật lí, được thể hiện trong Hình 41-13, những phản ứng này cần thiết cho sự vận chuyển CO2.
Vận chuyển CO2 dưới dạng hòa tan.
Một phần nhỏ của CO2 được vận chuyển dưới dạng hoà tan đến phổi. Nhớ lại rằng PCO2 máu tĩnh mạch là 45 mm Hg và ở máu động mạch là 40 mm Hg. Lượng CO2 hòa tan trong máu ở phân áp 45 mm Hg là khoảng 2,7 ml/dl (2,7% thể tích). Lượng hòa tan ở phân áp 40 mm Hg là khoảng 2,4 ml, hay sự khác biệt là 0,3 ml. Do đó, chỉ có khoảng 0,3 ml CO2 được vận chuyển dưới dạng hòa tan bởi mỗi 100 ml máu chảy. Nó chiếm khoảng 7 % lượng CO2 được vận chuyển.
Vận chuyển CO2 dưới dạng ion Bicarbonate HCO3-
Phản ứng của Dioxide Carbon bên trong hồng cầu.-Tác động của Carbonic Anhydrase.
CO2 không hòa tan trong máu phản ứng với nước để tạo thành acid carbonic. Phản ứng này có thể xảy ra rất chậm, do đó bên trong hồng cầu có một enzym đóng vai trò rất quan trọng là carbonic anhydrase xúc tác cho phản ứng giữa CO2 và nước trong hồng cầu làm tăng tốc tốc độ phản ứng lên khoảng 5000 lần. Do đó, thay vì cần thời gian dài để xảy ra phản ứng như ở trong huyết tương, các phản ứng xảy ra rất nhanh trong hồng cầu đạt trạng thái cân bằng gần như hoàn toàn trong khoảng thời gian rất ngắn. Hiện tượng này cho phép một lượng lớn CO2 phản ứng bên trong hồng cầu, ngay cả trước khi máu đi qua các mao mạch ở mô.
Sự phân ly của acid carbonic thành ion Bicarbonate và ion H+
Trong giây lát, acid carbonic (H2CO3) được tạo ra trong hồng cầu đã phân ly thành ion HCO3- và ion H+. Hầu hết lượng ion H+ sẽ kết hợp với hemoglobintrong hồng cầu vì hemoglobin là một hệ đệm acid- base mạnh. Đổi lại, HCO3- sẽ khuếch tán từ hồng cầu vào huyết tương, trong khi đó các ion clorua khuếch tán từ huyết tương vào hồng cầu để thế chỗ. Sự khuếch tán này được thực hiện bởi sự có mặt của một loại protein mang bicarbonate-chloride đặc biệt trong màng hồng cầu, mà nhờ đó sự trao đổi qua lại giữa 2 ion này theo hướng ngược nhau được vận chuyển một cách nhanh chóng. Như vậy, sự di chuyển ion chloride ở hồng cầu trong máu tĩnh mạch là lớn hơn ở động mạch, hiện tượng này gọi là sự di chuyển ion chloride.
Dạng thuận nghịch của CO2 ở bên trong hồng cầu dưới tác động của enzyme anhydrase carbonic chiếm khoảng 70 % lượng CO2 vận chuyển từ mô đến phổi. Do đó đây là dạng vận chuyển CO2 quan trọng nhất. Thật vậy, khi ức chế anhydrase được thực hiện trên động vật đã ngăn chặn các phản ứng của anhydrase carbonic trong hồng cầu, sự vận chuyển CO2 từ các mô trở nên rất kém đến nỗi mà PCO2 ở mô có thể tăng lên đến 80 mm Hg thay vì mức bình thường là 45 mm Hg.
Sự vận chuyển của CO2 dưới dạng kết hợp với hemoglobin và protein huyết tương -Carbaminohemoglobin
Ngoài phản ứng với nước, CO2 phản ứng trực tiếp với các gốc amin của phân tử hemoglobin để tạo thành các hợp chất carbaminohemoglobin (CO2Hgb). Sự kết hợp của CO2 và hemoglobin là một phản ứng thuận nghịch xảy ra với một sự gắn kết lỏng lẻo, do đó CO2 có thể dễ dàng giải phóng vào phế nang, nơi PCO2 thấp hơn so với các mao mạch phổi.
Một lượng nhỏ CO2 cũng phản ứng theo cách tương tự với protein huyết tương trong các mao mạch ở mô. Phản ứng này thực sự ít ý nghĩa đối với việc vận chuyển CO2 vì số lượng của các protein này trong máu chỉ bằng một phần tư số lượng hemoglobin.
Lượng CO2 có thể được vận chuyển từ các mô ngoại vi đến phổi nhờ carbamino gắn với hemoglobin và protein huyết tương chiếm khoảng 30 % của tổng số lượng CO2 được vận chuyển-thông thường là khoảng 1,5 ml CO2 trong mỗi 100 ml máu. Tuy nhiên, vì phản ứng này là chậm hơn nhiều so với phản ứng của CO2 bên trong hồng cầu nên thực sự nghi ngờ rằng trong điều kiện bình thường cơ chế carbamino này chỉ vận chuyển hơn 20 % tổng số CO2.
12. ĐỒ THỊ PHÂN LY CARBON DIOXIDE
Đường cong thể hiện trong Hình 41-14 gọi là đồ thị phân ly carbon-dioxide (CO2) -mô tả sự phụ thuộc của tổng lượng CO2 trong máu ở tất cả các dạng vận chuyển của nó vào PCO2. Lưu ý rằng các giới hạn của PCO2 máu bình thường dao động trong một phạm vi hẹp, 40 mm Hg trong máu động mạch và 45 mm Hg trong máu tĩnh mạch. Cũng lưu ý rằng bình thường nồng độ CO2 trong máu dưới tất cả các dạng khác nhau của nó chiếm khoảng 50% thể tích, nhưng chỉ có 4% này được trao đổi trong quá trình vận chuyển bình thường của CO2 từ mô đến phổi. Do đó nồng độ CO2 tăng lên đến khoảng 52 % thể tích khi máu đi qua các mô và giảm xuống còn khoảng 48% thể tích khi nó đi qua phổi.
KHI OXY GẮN VỚI HEMOGLOBIN, CARBON DIOXIDE ĐƯỢC GIẢI PHÓNG (HIỆU ỨNG HALDANE) LÀM TĂNG SỰ VẬN CHUYỂN CO2
Ở chương trước, chúng ta đã chỉ ra rằng sự gia tăng CO2 trong máu gây ra sự giải phóng O2 từ hemoglobin (hiệu ứng Bohr), đó là một yếu tố quan trọng trong việc tăng vận chuyển O2. Điều ngược lại cũng đúng: việc O2 gắn với hemoglobin có xu hướng thế chỗ CO2 trong máu. Thật vậy, hiệu ứng này, gọi là hiệu ứng Haldane, vai trò quan trọng trong việc thúc đẩy vận chuyển CO2 hơn nhiều so với hiệu ứng Bohr trong việc thúc đẩy vận chuyển O2.
Kết quả của hiệu ứng Haldane từ thực tế đơn giản là: sự kết hợp của O2 với hemoglobin trong phổi dẫn đến hemoglobin để trở thành một axit mạnh do đó đã đẩy CO2 ra khỏi máu và vào các phế nang theo hai cách. Đầu tiên, các hemoglobin có tính acid cao hơn nên ít có khuynh hướng kết hợp với CO2 để tạo thành carbaminohemoglobin, do đó đã đẩy CO2 ở dạng carbamin ra khỏi máu. Thứ hai, hemoglobin tăng tính axit cũng gây ra sự dư thừa ion quá mức, và các ion này liên kết với các HCO3- để tạo thành axit cacbonic, sau đó phân ly thành nước và CO2 và CO2 được giải phóng từ máu vào phế nang, cuối cùng ra ngoài không khí.
Hình 41-15 cho thấy ảnh hưởng đáng kể của hiệu ứng Haldane lên sự vận chuyển CO2 từ mô đến phổi. Đồ thị này cho thấy 2 phần của đồ thị phân ly CO2: (1) khi PO2 =100 mm Hg trong các mao mạch máu phổi, và (2) khi PO2= 40 mmHg trong các mao mạch ở mô. Điểm A cho thấy PCO2= 45 mmHg trong các mô bình thường chiếm 52 % thể tích CO2 trong máu. Ngay sau khi vào phổi, PCO2 giảm xuống còn 40 mm Hg và PO2 tăng lên đến 100 mm Hg. Nếu đường cong CO2 phân ly không thay đổi bởi hiệu ứng Haldane, thể tích CO2 trong máu sẽ giảm xuống còn 50 % thể tích, điều này sẽ làm tổn thất chỉ 2% thể tích của CO2. Tuy nhiên, sự gia tăng PO2 trong phổi làm giảm đường cong phân ly CO2 từ đường cong phía trên cao hơn xuống đường cong phía dưới thấp hơn trong hình, vì vậy thể tích CO2 giảm đến 48 % thể tích (điểm B). Điều này thể hiện có thêm 2 % thể tích co2 mất đi. Như vậy, hiệu ứng Haldane làm tăng khoảng gấp đôi lượng CO2 giải phóng từ máu vào trong phổi và khoảng gấp đôi sự vận chuyển CO2 trong các mô.
Thay đổi tính acid của máu trong quá trình vận chuyển CO2
Axit carbonic được hình thành khi đi CO2 vào máu trong các mô ngoại biên làm giảm pH máu. Tuy nhiên, phản ứng của axit này với các hệ đệm acid-base của máu ngăn nồng độ H+ tăng cao (pH giảm nhiều). Bình thường, máu động mạch có pH khoảng 7, 41, và khi máu nhận CO2 từ các mao mạch ở mô, pH máu giảm xuống đến một giá trị máu tĩnh mạch khoảng 7.37. Nói cách khác, một sự thay đổi pH là 0, 04 đơn vị đã diễn ra. Điều ngược lại xảy ra khi CO2 được giải phóng từ máu vào trong phổi, với độ pH tăng lên đến giá trị máu động mạch 7, 41. Trong lao động nặng hoặc các điều kiện khác cần các hoạt động trao đổi chất cao, hoặc khi tốc độ máu chảy qua mô chậm, việc giảm pH trong máu ở mô (và trong chính mô) có thể có thể nhiều hơn 0,5, khoảng 12 lần bình thường, gây ra nhiễm toan nặng ở mô.
13. TỶ LỆ TRAO ĐỔI HÔ HẤP (THƯƠNG SỐ HÔ HẤP)
Bình thường sự vận chuyển thường xuyên của O2 từ phổi đến các mô của mỗi 100 ml máu là khoảng 5 ml, trong khi vận chuyển của CO2 từ mô đến phổi là khoảng 4 ml. Do đó, dưới điều kiện nghỉ bình thường, chỉ có khoảng 82 % lượng CO2 được giải phóng ra phổi trong khi O2 được nhận vào từ phổi. Tỷ lệ của lượng CO2 thải ra và O2 được nhận vào được gọi là tỷ lệ trao đổi hô hấp (R).
Giá trị của R thay đổi dưới các điều kiện chuyển hóa khác nhau. Khi một người chỉ sử dụng Carbohydrate cho chuyển hóa cơ thể, R tăng lên đến 1,00. Ngược lại, khi một người chỉ sử dụng chất béo cho chuyển hóa năng lượng, R giảm xuống mức thấp 0.7. Lý do cho sự khác biệt này là khi O2 được chuyển hóa với carbohydrate, một phân tử CO2 được hình thành cho mỗi phân tử O2 bị tiêu thụ; khi O2 phản ứng với chất béo, một phần lớn của O2 kết hợp với các nguyên tử H+ từ các chất béo để tạo thành H2O thay vì CO2. Nói cách khác, khi chất béo được chuyển hóa, thương số hô hấp của các phản ứng hóa học trong các mô khoảng 0.70 thay vì 1.00. (Các thương số mô hô hấp được thảo luận trong Chương 72.) Đối với một người với một chế độ ăn uống bình thường tiêu thụ một lượng trung bình carbohydrate, chất béo và protein, giá trị trung bình của R được coi là 0,825.
Bài viết được dịch từ sách: Guyton and Hall text book of Medicine and Physiology
Từ khóa » Có Chức Năng Vận Chuyển O2 Và Co2
-
Vì Sao Hồng Cầu Có Chức Năng Vận Chuyển O2 Và CO2 - Hương Lan
-
Sự Vận Chuyển CO2 Trong Máu | Vinmec
-
Nhờ Vào đâu Mà Hồng Cầu Có Chức Năng Vận Chuyển O2 Và CO2
-
Loại Tế Bào Máu Làm Nhiệm Vụ Vận Chuyển O2 Và CO2 Là:
-
VẬN CHUYỂN O2 VÀ CO2TRONG CƠ THỂ VÀ TRAO ĐỔI KHÍ Ở TẾ ...
-
Nhờ Vào đâu Mà Hồng Cầu Có Chức Năng Vận Chuyển O2 Và CO2
-
Tế Bào Của Máu Có Chức Năng Vận Chuyển O2 Và CO2 Là A:Tiểu Cầu ...
-
Vận Chuyển O2, CO2 Trong Cơ Thể Và Trao đổi Khí ở Tế Bào (hô Hấp ...
-
Thành Phần Nào Của Máu Vận Chuyển O2 Và Co2?
-
Các Dạng Vận Chuyển Khí Oxi Và Cacbonic Trong Máu - Quảng Văn Hải
-
Sự Vận Chuyển O2 Trong Máu Và Mô Kẽ
-
Vì Sao Hồng Cầu Có Khả Năng Vận Chuyển Khí O2 Và CO2