Số Hữu Tỉ. Số Thực - Lý Thuyết Toán 7

  1. Trang chủ
  2. Lý thuyết toán học
  3. Toán 7
  4. CHƯƠNG 1: SỐ HỮU TỈ, SỐ THỰC
  5. Số hữu tỉ. Số thực
Số hữu tỉ. Số thực Trang trước Mục Lục

1. Tập hợp Q các số hữu tỉ

a) Định nghĩa số hữu tỉ

Số hữu tỉ là số viết được dưới dạng phân số \(\dfrac{a}{b}\) với \(a,b \in \mathbb{Z},\,b \ne 0.\)

Tập hợp số hữu tỉ được kí hiệu là \(\mathbb{Q}\).

b) So sánh hai số hữu tỉ

+ Với hai số hữu tỉ bất kì $x,y$ ta tuôn có hoặc \(x = y\) hoặc \(x < y\) hoặc \(x > y\).

+ Nếu \(x < y\) thì trên trục số x ở bên trái điểm $y$, nếu \(x > y\) thì trên trục số \(x\) ở bên phải điểm \(y\).

+ Số hữu tỉ lớn hơn 0 được gọi là số hữu tỉ dương

+ Số hữu tỉ nhỏ hơn 0 được gọi là số hữu tỉ âm

+ Số hữu tỉ 0 không là số hữu tỉ dương cũng không là số hữu tỉ âm

2. Cộng-trừ hai số hữu tỉ

a) Qui tắc cộng-trừ số hữu tỉ

b) Tính chất

Phép cộng số hữu tỉ có các tính chất của phép cộng phân số:

Tính chất giao hoán: $x + y = y + x$

Tính chất kết hợp: $\left( {x + y} \right) + z = x + \left( {y + z} \right)$

Cộng với số $0$ : $x + 0 = x$

Mỗi số hữu tỉ đều có một số đối.

c) Qui tắc “chuyển vế”

3. Nhân chia hai số hữu tỉ

a) Nhân hai số hữu tỉ

Với \(x = \dfrac{a}{b};\,y = \dfrac{c}{d}\,\left( {b,d \ne 0} \right)\) ta có: \(x.y = \dfrac{a}{b}.\dfrac{c}{d} = \dfrac{{a.c}}{{b.d}}\) .

b) Chia hai số hữu tỉ

Với \(x = \dfrac{a}{b};\,y = \dfrac{c}{d}\,\left( {b,d \ne 0;\,y \ne 0} \right)\) ta có: \(x:y = \dfrac{a}{b}:\dfrac{c}{d} = \dfrac{a}{b}.\dfrac{d}{c} = \dfrac{{a.d}}{{b.c}}\) .

Qui tắc: Ta có thể nhân, chia hai số hữu tỉ bằng viết chúng dưới dạng phân số rồi áp dụng quy tắc nhân, chia phân số.

c) Tính chất

Phép nhân số hữu tỉ có các tính chất của phép nhân phân số:

Tính chất giao hoán: \(a.b = b.a\)

Tính chất kết hợp: $\left( {a.b} \right).c = a.\left( {b.c} \right)$

Nhân với số 1: \(a.1 = a\)

Tính chất phân phối của phép nhân đối với phép cộng: $a.\left( {b + c} \right) = a.b + a.c$

Mỗi số hữu tỉ khác 0 đều có một số nghịch đảo

Chú ý: Thương của phép chia số hữu tỉ \(x\) cho số hữu tỉ \(y\) \(\left( {y \ne 0} \right)\) gọi là tỉ số của hai số \(x\) và \(y\). Kí hiệu là \(\dfrac{x}{y}\) hay \(x:y\).

4. Giá trị tuyệt đối của một số hữu tỉ

Nhận xét: Với mọi \(x \in \mathbb{Q}\) ta luôn có: \(\left| x \right| \ge 0;\,\left| x \right| = \left| { - x} \right|\) và \(\left| x \right| \ge x\).

5. Cộng, trừ, nhân, chia số thập phân

Để cộng, trừ, nhân, chia số thập phân, ta có thể viết chúng dưới dạng phân số thập phân rồi làm theo quy tắc các phép tính đã biết về phân số.

6. Lũy thừa một số hữu tỉ

a) Lũy thừa với số mũ tự nhiên

b) Các công thức lũy thừa

Tích và thương của hai lũy thừa cùng cơ số

Lũy thừa của lũy thừa

Lũy thừa của một tích

Lũy thừa của một thương

7. Tỉ lệ thức

a) Định nghĩa tỉ lệ thức

+ Tỉ lệ thức là đẳng thức của hai tỉ số \(\dfrac{a}{b} = \dfrac{c}{d}\)

+ Tỉ lệ thức \(\dfrac{a}{b} = \dfrac{c}{d}\) còn được viết là \(a:b = c:d\)

b) Tính chất tỉ lệ thức

c) Tính chất dãy tỉ số bằng nhau

8. Số thập phân

a) Số thập phân hữu hạn

Nếu một phân số tối giản với mẫu dương mà mẫu không có ước nguyên tố khác 2 và 5 thì phân số đó viết được dưới dạng số thập phân hữu hạn.

b) Số thập phân vô hạn tuần hoàn

Nếu một phân số tối giản với mẫu dương mà mẫu có ước nguyên tố khác 2 và 5 thì phân số đó viết được dưới dạng số thập phân vô hạn tuần hoàn.

9. Làm tròn số

Qui ước làm tròn số

Trường hợp 1: Nếu chữ số đầu tiên trong các chữ số bị bỏ đi nhỏ hơn 5 thì ta giữ nguyên bộ phận còn lại

Trường hợp 2: Nếu chữ số đầu tiên trong các chữ số bị bỏ đi lớn hơn hoặc bằng 5 thì ta cộng thêm 1 vào chữ số cuối cùng của bộ phận còn lại.

10. Số vô tỉ, số thực

a) Định nghĩa số vô tỉ

+ Số vô tỉ là số viết được dưới dạng số thập phân vô hạn không tuần hoàn.

+ Tập hợp các số vô tỉ kí hiệu là $I$.

b) Định nghĩa căn bậc hai

+ Căn bậc hai của một số $a$ không âm là số $x$ sao cho \({x^2} = a.\)

+ Số dương $a$ có đúng hai căn bậc hai là \(\sqrt a \) và \( - \sqrt a \)

+ Số 0 chỉ có một căn bậc hai là số 0: \(\sqrt 0 = 0\)

c) Định nghĩa số thực

+ Số hữu tỉ và số vô tỉ được gọi chung là số thực. Kí hiệu: \(\mathbb{R}\)

+ Nếu $a$ là số thực thì a biểu diễn được dưới dạng số thập phân hữu hạn hoặc vô hạn.

d) Các phép toán

Trong tập hợp số thực \(\mathbb{R}\), ta cũng định nghĩa các phép toán cộng, trừ, nhân chia, lũy thừa và khai căn. Các phép toán trong tập hợp số thực cũng có các tính chất như các phép toán trong tập hợp các số hữu tỉ.

Trang trước Mục Lục

Có thể bạn quan tâm:

  • Tập hợp Q các số hữu tỉ
  • CHƯƠNG 1: SỐ HỮU TỈ, SỐ THỰC
  • Số thực
  • Các tập hợp số
  • Lũy thừa với số mũ hữu tỉ - Định nghĩa và tính chất

Tài liệu

Toán 7: Chuyên đề số hữu tỉ

Toán 7: Chuyên đề số hữu tỉ

9 chuyên đề đại số - Vũ Hữu Bình

9 chuyên đề đại số - Vũ Hữu Bình

Tài liệu chuyên Toán Đại số 8 Chủ biên Vũ Hữu bình

Tài liệu chuyên Toán Đại số 8 Chủ biên Vũ Hữu bình

Toán 12 - 100 bài tập trắc nghiệm chuyên đề hàm số có đáp án - Hà Hữu Hải

Toán 12 - 100 bài tập trắc nghiệm chuyên đề hàm số có đáp án - Hà Hữu Hải

Sở giáo dục Hà Nội : Kỳ kiểm tra khảo sát THPT 2018 Mã đề 106

Sở giáo dục Hà Nội : Kỳ kiểm tra khảo sát THPT 2018 Mã đề 106

Từ khóa » Tính So Sánh Giá Trị Biểu Thức Cộng Trừ Số Hữu Tỉ