Tam Giác đều – Wikipedia Tiếng Việt

Tam giác đều

Trong hình học, tam giác đều là tam giác có ba cạnh bằng nhau và ba góc bằng nhau, mỗi góc bằng 60°. Nó là một đa giác đều với số cạnh bằng 3.

Tính chất

[sửa | sửa mã nguồn]

Giả sử độ dài ba cạnh tam giác đều bằng a {\displaystyle a\,\!} , dùng định lý Pytago chứng minh được:

  • Diện tích: A = a 2 3 4 {\displaystyle A=a^{2}{\frac {\sqrt {3}}{4}}}
  • Chu vi: p = 3 a {\displaystyle p=3a\,\!}
  • Bán kính đường tròn ngoại tiếp R = a 3 3 {\displaystyle R=a{\frac {\sqrt {3}}{3}}}
  • Bán kính đường tròn nội tiếp r = a 3 6 {\displaystyle r=a{\frac {\sqrt {3}}{6}}}
  • Trọng tâm của tam giác cũng là trực tâm và tâm của đường tròn nội tiếp và ngoại tiếp
  • Chiều cao của tam giác đều h = a 3 2 {\displaystyle h=a{\frac {\sqrt {3}}{2}}} .

Với một điểm P bất kỳ trong mặt phẳng tam giác, khoảng cách từ nó đến các đỉnh A, B, và C lần lượt là p, q, và t ta có:[1]

3 ( p 4 + q 4 + t 4 + a 4 ) = ( p 2 + q 2 + t 2 + a 2 ) 2 {\displaystyle 3(p^{4}+q^{4}+t^{4}+a^{4})=(p^{2}+q^{2}+t^{2}+a^{2})^{2}} .

Với một điểm P bất kỳ nằm bên trong tam giác, khoảng cách từ nó đến các cạnh tam giác là d, e, và f, thì d+e+f = chiều cao của tam giác, không phụ thuộc vào vị trí P.[2]

Với điểm P nằm trên đường tròn ngoại tiếp, các khoảng cách từ nó đến các đỉnh của tam giác là p, q, và t, thì[1]

4 ( p 2 + q 2 + t 2 ) = 5 a 2 {\displaystyle 4(p^{2}+q^{2}+t^{2})=5a^{2}}

16 ( p 4 + q 4 + t 4 ) = 11 a 4 {\displaystyle 16(p^{4}+q^{4}+t^{4})=11a^{4}} .

Nếu P nằm trên cung nhỏ BC của đường tròn ngoại tiếp, với khoảng cách đến các đỉnh A, B, và C lần lượt là p, q, và t, ta có:[1]

p = q + t {\displaystyle p=q+t}

q 2 + q t + t 2 = a 2 ; {\displaystyle q^{2}+qt+t^{2}=a^{2};}

hơn nữa nếu D là giao điểm của BC và PA, DA có độ dài z và PD có độ dài y, thì[3]

z = t 2 + t q + q 2 t + q , {\displaystyle z={\frac {t^{2}+tq+q^{2}}{t+q}},}

và cũng bằng t 3 − q 3 t 2 − q 2 {\displaystyle {\tfrac {t^{3}-q^{3}}{t^{2}-q^{2}}}} nếu tq; và

1 q + 1 t = 1 y . {\displaystyle {\frac {1}{q}}+{\frac {1}{t}}={\frac {1}{y}}.}

Dấu hiệu nhận biết

[sửa | sửa mã nguồn]
  • Tam giác có 3 cạnh bằng nhau là tam giác đều.
  • Tam giác có 3 góc bằng nhau là tam giác đều.
  • Tam giác cân có một góc bằng 60° là tam giác đều.
  • Tam giác có 2 góc bằng 60 độ là tam giác đều.
  • Tam giác có đường cao bằng nhau hoặc 3 đường phân giác bằng nhau hoặc 3 đường trung tuyến bằng nhau thì tam giác đó là tam giác đều.
  • Tam giác có 2 trong 4 điểm đồng quy (trọng tâm, trực tâm, tâm đường tròn nội tiếp, tâm đường tròn ngoại tiếp) trùng nhau thì tam giác đó là tam giác đều

Xem thêm

[sửa | sửa mã nguồn]
  • Lượng giác
  • Định lý Viviani
  • Tam giác Heron

Tham khảo

[sửa | sửa mã nguồn]
  1. ^ a b c De, Prithwijit, "Curious properties of the circumcircle and incircle of an equilateral triangle," Mathematical Spectrum 41(1), 2008-2009, 32-35.
  2. ^ Posamentier, Alfred S., and Salkind, Charles T., Challenging Problems in Geometry, Dover Publ., 1996.
  3. ^ Posamentier, Alfred S., and Salkind, Charles T., Challenging Problems in Geometry, second edition, Dover Publ. Co., 1996, pp. 170-172.

Liên kết ngoài

[sửa | sửa mã nguồn]
  • Weisstein, Eric W., "Equilateral Triangle", MathWorld.

Từ khóa » Tính Chất Vuông Góc Của Tam Giác đều