Tích Descartes – Wikipedia Tiếng Việt

Bài viết này cần thêm chú thích nguồn gốc để kiểm chứng thông tin. Mời bạn giúp hoàn thiện bài viết này bằng cách bổ sung chú thích tới các nguồn đáng tin cậy. Các nội dung không có nguồn có thể bị nghi ngờ và xóa bỏ.

Trong toán học, đặc biệt là trong lý thuyết tập hợp, tích Descartes (hay tích Đềcác, tích trực tiếp[1]) của hai tập hợp AB, ký hiệu là A×B, là một tập hợp chứa tất cả các bộ có dạng (a, b) với a là một phần tử của Ab là một phần tử của B. Hay, viết trong ngôn ngữ của lý thuyết tập hợp:

A × B = { ( a , b ) ∣ a ∈ A , b ∈ B } . {\displaystyle A\times B=\{(a,b)\mid a\in A,b\in B\}.}

Ví dụ, nếu:

A = {1,2} B = {p,q,r}

thì:

A×B = {(1,p),(1,q),(1,r),(2,p),(2,q),(2,r)}

và:

B×A = {(p,1),(q,1),(r,1),(p,2),(q,2),(r,2)}

Như vậy tích Descartes của 2 tập hợp là một phép toán 2 ngôi trên các tập hợp. Có thể mở rộng định nghĩa tích Descartes của nhiều tập hợp AA2×...×An là tập hợp chứa tất cả các bộ có dạng (a1,a2,...,an) với ai là một phần tử của Ai (i = 1, 2,..., n). Hay, viết trong ngôn ngữ của lý thuyết tập hợp:

A 1 × ⋯ × A n = { ( a 1 , … , a n ) ∣ a 1 ∈ A 1 , ⋯ , a n ∈ A n } . {\displaystyle A_{1}\times \cdots \times A_{n}=\{(a_{1},\ldots ,a_{n})\mid a_{1}\in A_{1},\cdots ,a_{n}\in A_{n}\}.}

Lịch sử

[sửa | sửa mã nguồn]

Tên gọi tích Descartes được lấy theo tên của nhà toán học người Pháp René Descartes, dựa trên đóng góp của ông cho đại số giải tích

Tính chất

[sửa | sửa mã nguồn]
  • Theo ví dụ ở đầu bài viết, tích Descartes là phép toán không có tính giao hoán. Phép toán này có tính chất kết hợp.

Lực lượng (số phần tử) của tích Descartes bằng tích của lực lượng của từng tập hợp:

|A1×...×An| = |A1|×...×|An|

Trong ví dụ ở đầu bài viết, |A| = 2, |B| = 3 và ta thấy |A×B| = 2×3 = 6.

  • Tích Descartes giữa hai tập (hoặc một số hữu hạn tập) đếm được là đếm được

Lũy thừa Descartes

[sửa | sửa mã nguồn]

Ta có lũy thừa bậc 2 Descartes (hay bình phương Descartes) của tập hợp A được định nghĩa là tích Descartes của A với A:

A2 = A×A

Tương tự, lũy thừa Descartes bậc n là tích Descartes của n tập A:

An = A×A×...×A

(có n tập A ở vế phải)

Tham khảo

[sửa | sửa mã nguồn]
  1. ^ Nguyễn, Hữu Việt Hưng. Đại số tuyến tính.
  • Nguyễn Đình Trí (Chủ biên) và các tác giả khác, Toán cao cấp, Tập 1, Nhà xuất bản Giáo dục, Tái bản lần thứ 7, 2006
Hình tượng sơ khai Bài viết liên quan đến toán học này vẫn còn sơ khai. Bạn có thể giúp Wikipedia mở rộng nội dung để bài được hoàn chỉnh hơn.
  • x
  • t
  • s
  • x
  • t
  • s
Lý thuyết tập hợp
Tiên đề
  • Tiên đề cặp
  • Tiên đề chính tắc
  • Tiên đề chọn
    • đếm được
    • phụ thuộc
    • toàn cục
  • Tiên đề giới hạn kích thước
  • Tiên đề hợp
  • Tiên đề mở rộng
  • Tiên đề nối
  • Tiên đề tập lũy thừa
  • Tiên đề tính dựng được
  • Tiên đề vô hạn
  • Tiên đề Martin
  • Sơ đồ tiên đề
    • thay thế
    • tuyển lựa
Biểu đồ Venn hai tập hợp giao nhau
Phép toán
  • Tích Descartes
  • Phần bù
  • Luật De Morgan
  • Phép giao
  • Tập lũy thừa
  • Phép hợp
  • Liên hiệp rời rạc
  • Hiệu đối xứng
  • Khái niệm
  • Phương pháp
  • Lực lượng
  • Số đếm (lớn)
  • Lớp (lý thuyết tập hợp)
  • Vũ trụ kiến thiết
  • Giả thiết continuum
  • Lập luận đường chéo
  • Phần tử (cặp được sắp, bộ)
  • Họ
  • Ép
  • Song ánh
  • Số thứ tự
  • Quy nạp siêu hạn
  • Sơ đồ Venn
Các dạng tập hợp
  • Đếm được
  • Rỗng
  • Hữu hạn (di truyền)
  • Mờ
  • Vô hạn
    • vô hạn Dedekind
  • Tính được
  • Tập con ⋅ Tập chứa
  • Đơn điểm
  • Bắc cầu
  • Không đếm được
  • Tập hợp phổ dụng
Lý thuyết
  • Lý thuyết tập hợp thay thế
  • Lý thuyết tập hợp tiên đề
  • Lý thuyết tập hợp ngây thơ
  • Định lý Cantor
  • Zermelo
    • Tổng quát
  • Principia Mathematica
    • New Foundations
  • Zermelo–Fraenkel
    • von Neumann–Bernays–Gödel
      • Morse–Kelley
    • Kripke–Platek
    • Tarski–Grothendieck
  • Nghịch lý
  • Vấn đề
  • Nghịch lý Russell
  • Bài toán Suslin
  • Nghịch lý Burali-Forti
Nhà lý thuyết tập hợp
  • Abraham Fraenkel
  • Bertrand Russell
  • Ernst Zermelo
  • Georg Cantor
  • John von Neumann
  • Kurt Gödel
  • Paul Bernays
  • Paul Cohen
  • Richard Dedekind
  • Thomas Jech
  • Thoralf Skolem
  • Willard Quine
Thể loại

Từ khóa » Tích Descartes Và Các Tính Chất