Tìm Cực Trị Của Các Hàm Số Sau: 1/3x^3 + 2x^2 + 3x -1 - Haylamdo
Có thể bạn quan tâm
Bài 2: Cực trị của hàm số
Haylamdo biên soạn và sưu tầm lời giải Bài 11 trang 16 sgk Giải Tích 12 nâng cao được biên soạn lời giải chi tiết sẽ giúp bạn biết cách làm bài tập môn Toán 12.
Bài 11 (trang 16 sgk Giải Tích 12 nâng cao): Tìm cực trị của các hàm số sau:
Lời giải:
a) Hàm số đã cho xác định trên R.
Ta có: f’(x) = x2+4x+3
Từ đó f’(x) = 0 ⇔ x = -1 hoặc x = -3
Cách 1.
Bảng biến thiên
Vậy hàm số đạt cực đại tại điểm x = -3, giá trị cực đại của hàm số là: fCĐ = f(-3) = -1.
Hàm số đạt cực tiểu tại điểm x = -1, giá trị cực tiển của hàm số là fCT = f(-1) = -7/3
Cách 2. f’’(x) = 2x + 4 ⇒ f’’(-3) = -2 < 0; f’’(-1) = 2 > 0
Vậy hàm đạt cực đại tại điểm x = -3 giá trị cực đại của hàm số là:
fCĐ = f(-3) = -1.
Hàm số đạt cực tiểu tại điểm x = -1, fCT = f(-1) = -7/3
b) Tập xác định: R
f' (x)=x2-2x+2=(x-1)2+1>0,∀x ∈R=>f(x) luôn đồng biến nên hàm số không có cực trị.
c) Tập xác định: R \ {0}
Cách 1.
Bảng biến thiên
Vậy hàm số cực đại tại x = -1; fCĐ=f(-1)=-2
Hàm số cực tiểu tại x = 1; fCT=f(1)=2
Cách 2.
Vì f’’(- 1) = -2 < 0 nên hàm số đạt cực đại tại x = -1; fCĐ = f(-1) = -2
f'' (1) = 2 > 0 nên hàm số đạt cực tiểu tại x = 1; fCT = f(1) = 2
d) f(x) xác định liên tục trên R.
Với x > 0, f'(x) = 2x + 2
Từ đó f'(x) = 0 ⇔ x = -1 (loại)
Với x < 0, f'(x) = -2x - 2
Từ đó f'(x) = 0 ⇔ x = -1 (thỏa mãn)
Với x = 0, hàm số không có đạo hàm (chú ý sgk giải tích 12 nâng cao trang 12)
Hàm số đạt cực đại tại x = -1, fCĐ = f(-1) = 1
Hàm số đạt cực tiểu tại x = 0, fCT = f(0) = 0
Chú ý: mặc dù không tồn tại đạo hàm tại điểm , nhưng hàm số vẫn có thể đạt cực trị tại điểm này.
e) Tập xác định D = R
f’(x) = x4-x2
f' (x)=0 ⇔ x = 0 hoặc x = ±1
Bảng biến thiên:
Vậy hàm số đạt cực đại tại x = -1, fCD = f(-1) = 32/15 và hàm số cực tiểu tại x = 1; fCT = f(1) = 28/15
f) Tập xác định D = R \ {1}
Ta có:
f'(x)=0 ⇔ x = 0 hoặc x = 2. Ta có bảng biến thiên:
Vậy hàm số cực đại tại x = 0, fCĐ = f(0) = -3 và hàm số cực tiểu tại x = 2; fCT = f(2) = 1
Từ khóa » Cực Trị Của Hàm Số Lớp 12 Nâng Cao
-
Giải Toán 12 Nâng Cao Bài 2: Cực Trị Của Hàm Số
-
120 Bài Tập Cực Trị Của Hàm Số Chọn Lọc, Có Lời Giải (nâng Cao
-
Cực Trị Của Hàm Số Lớp 12: Lý Thuyết, Cách Tìm Và Bài Tập
-
Các Dạng Toán Cơ Bản Và Nâng Cao Cực Trị Của Hàm Số
-
GIẢI TÍCH - TOÁN 12 NÂNG CAO
-
Bài 2. Cực Trị Của Hàm Số
-
2 Dạng Bài Nâng Cao Về Cực Trị Của Hàm Số - Học Thật Giỏi
-
Giải Toán 12 Nâng Cao: Bài 2. Cực Trị Của Hàm Số - Toploigiai
-
[SGK Scan] Cực Trị Của Hàm Số - Sách Giáo Khoa
-
Tìm Cực Trị Của Các Hàm Số Sau. Bài 12 Trang 17 SGK Đại Số Và Giải ...
-
Bài 11, 12, 13 Trang 16, 17 Giải Tích 12 Nâng Cao: Cực Trị Của Hàm Số
-
Bài Toán Nâng Cao Cực Trị Hàm Số - Toán 12 - Thầy Trần Xuân Trường
-
Các Dạng Toán Nâng Cao Về Cực Trị Của Hàm Số - 123doc
-
Giáo án Giải Tích 12 Nâng Cao - Tiết 2: Cực Trị Của Hàm Số